Fast-growing hierarchy

From Cantor's Attic
Jump to: navigation, search

The fast-growing hierarchy is a sequence of functions that grow faster very fast. It maps countable ordinals to certain functions. It is defined as follows:

\(f_0(n)=n+1 \\ f_{\alpha+1}(n)=f^n_\alpha(n)\)

\(f_\alpha(n)=f_{\alpha[n]}(n)\) if and only if \(\alpha\) is a limit ordinal.

Values

These calculations are based on Diagonalization. There are a few things to note: "\(\uparrow\)" means Knuth's up-arrow notation. "\(\lbrace\rbrace\)" means BEAF.

\begin{eqnarray*} f_0(n) &=& n + 1 \\ f_1(n) &=& f_0^n(n) = ( \cdots ((n + 1) + 1) + \cdots + 1) = n + n = 2n \\ f_2(n) &=& f_1^n(n) = 2(2(\ldots 2(2n))) = 2^n n > 2 \uparrow n \\ f_3(n) &>& 2\uparrow\uparrow n \\ f_4(n) &>& 2\uparrow\uparrow\uparrow n \\ f_m(n) &>& 2\uparrow^{m-1} n \\ f_\omega(n) &>& 2\uparrow^{n-1} n = Ack(n) \\ f_{\omega+1}(n) &>& \lbrace n,n,1,2 \rbrace \\ f_{\omega+2}(n) &>& \lbrace n,n,2,2 \rbrace \\ f_{\omega+m}(n) &>& \lbrace n,n,m,2 \rbrace \\ f_{\omega2}(n) &>& \lbrace n,n,n,2 \rbrace \\ f_{\omega3}(n) &>& \lbrace n,n,n,3 \rbrace \\ f_{\omega m}(n) &>& \lbrace n,n,n,m \rbrace \\ f_{\omega^2}(n) &>& \lbrace n,n,n,n \rbrace \\ f_{\omega^3}(n) &>& \lbrace n,n,n,n,n \rbrace \\ f_{\omega^m}(n) &>& \lbrace n,m+2 (1) 2 \rbrace \\ f_{\omega^{\omega}}(n) &>& \lbrace n,n+2 (1) 2 \rbrace > \lbrace n,n (1) 2 \rbrace \\ f_{\omega^{\omega}+1}(n) &>& \lbrace n,n,2 (1) 2 \rbrace \\ f_{\omega^{\omega}+2}(n) &>& \lbrace n,n,3 (1) 2 \rbrace \\ f_{\omega^{\omega}+m}(n) &>& \lbrace n,n,m+1 (1) 2 \rbrace \\ f_{\omega^{\omega}+\omega}(n) &>& \lbrace n,n,n+1 (1) 2 \rbrace > \lbrace n,n,n (1) 2 \rbrace \\ f_{\omega^{\omega}+\omega+1}(n) &>& \lbrace n,n,1,2 (1) 2 \rbrace \\ f_{\omega^{\omega}+\omega2}(n) &>& \lbrace n,n,n,2 (1) 2 \rbrace \\ f_{\omega^{\omega}+\omega^2}(n) &>& \lbrace n,n,n,n (1) 2 \rbrace \\ f_{{\omega^{\omega}}2}(n) &>& \lbrace n,n (1) 3 \rbrace \\ f_{{\omega^{\omega}}3}(n) &>& \lbrace n,n (1) 4 \rbrace \\ f_{{\omega^{\omega}}m}(n) &>& \lbrace n,n (1) m+1 \rbrace \\ f_{\omega^{\omega+1}}(n) &>& \lbrace n,n (1) n+1 \rbrace > \lbrace n,n (1) n \rbrace \\ f_{\omega^{\omega+2}}(n) &>& \lbrace n,n (1) n,n \rbrace \\ f_{\omega^{\omega+3}}(n) &>& \lbrace n,n,n (1) n,n,n \rbrace \\ f_{\omega^{\omega+m}}(n) &>& \lbrace n,m (1)(1) 2 \rbrace \\ f_{\omega^{\omega2}}(n) &>& \lbrace n,n (1)(1) 2 \rbrace = \lbrace n,2 (2) 2 \rbrace \\ f_{\omega^{\omega3}}(n) &>& \lbrace n,n (1)(1)(1) 2 \rbrace = \lbrace n,3 (2) 2 \rbrace \\ f_{\omega^{\omega m}}(n) &>& \lbrace n,m (2) 2 \rbrace \\ f_{\omega^{\omega^2}}(n) &>& \lbrace n,n (2) 2 \rbrace \\ f_{\omega^{\omega^3}}(n) &>& \lbrace n,n (3) 2 \rbrace \\ f_{\omega^{\omega^m}}(n) &>& \lbrace n,n (m) 2 \rbrace \\ f_{\omega^{\omega^\omega}}(n) &>& \lbrace n,n (n) 2 \rbrace = \lbrace n,n (0,1) 2 \rbrace \\ f_{^4{\omega}}(n) &>& \lbrace n,n ((1) 1) 2 \rbrace = n \uparrow\uparrow 3 \&\ n \\ f_{^5{\omega}}(n) &>& \lbrace n,n ((0,1) 1) 2 \rbrace = n \uparrow\uparrow 4 \&\ n \\ f_{^6{\omega}}(n) &>& \lbrace n,n (((1) 1) 1) 2 \rbrace = n \uparrow\uparrow 5 \&\ n \\ f_{^m{\omega}}(n) &>& (X \uparrow\uparrow m-1) \&\ n \\ f_{\varepsilon_0}(n) &>& (X \uparrow\uparrow n-1) \&\ n \end{eqnarray*}


An Example

\(f_{\varepsilon_0}(2)=f_\omega(2)=f_2(2)=2^2 2=8\)

It might seem very strange that the gigantic input \(\varepsilon_0\) causes the output to be small, but at \(n=3\), the value is huge. Plug the smaller 2 into it and it will give you a surprise. These calculations are based on Diagonalization.

Other Hierarchies

It turns out that there is a hierarchy called the Slow-growing hierarchy. It is defined as follows:

\(g_0(n)=0 \\ g_{\alpha+1}(n)=g_\alpha(n)+1\)

\(g_\alpha(n)=g_{\alpha[n]}(n)\) if and only if \(\alpha\) is a limit ordinal.

The slow-growing hierarchy at \(\varepsilon_0\) only reaches the level of \(f_3(n)\), and doesn't reach \(f_{\varepsilon_0}(n)\) until the Bachmann-Howard ordinal. It might seem surprising that the slow-growing hierarchy can catch the fast-growing hierarchy, but it does this at \(\psi(\Omega_\omega)\), using Madore's ψ function.