Difference between revisions of "Huge"
Line 26: | Line 26: | ||
The first-order definition of $n$-huge is somewhat similar to [[measurable|measurability]]. Specifically, $\kappa$ is measurable iff there is a nonprincipal $\kappa$-complete [[filter|ultrafilter]], $U$, over $\kappa$. A cardinal $\kappa$ is $n$-huge with target $\lambda$ iff there is a normal $\kappa$-complete ultrafilter, $U$, over $\mathcal{P}(\lambda)$, and cardinals $\kappa=\lambda_0<\lambda_1<\lambda_2...<\lambda_{n-1}<\lambda_n=\lambda$ such that: | The first-order definition of $n$-huge is somewhat similar to [[measurable|measurability]]. Specifically, $\kappa$ is measurable iff there is a nonprincipal $\kappa$-complete [[filter|ultrafilter]], $U$, over $\kappa$. A cardinal $\kappa$ is $n$-huge with target $\lambda$ iff there is a normal $\kappa$-complete ultrafilter, $U$, over $\mathcal{P}(\lambda)$, and cardinals $\kappa=\lambda_0<\lambda_1<\lambda_2...<\lambda_{n-1}<\lambda_n=\lambda$ such that: | ||
− | $$\forall i<n(\{x\subseteq\lambda:\ | + | $$\forall i<n(\{x\subseteq\lambda:\text{order-type}(x\cap\lambda_{i+1})=\lambda_i\}\in U)$$ |
− | Where $\ | + | Where $\text{order-type}(X)$ is the [[Order-isomorphism|order-type]] of the poset $(X,\in)$. <cite>Kanamori2009:HigherInfinite</cite> This definition is, more intuitively, making $U$ very large, like most ultrafilter characterizations of large cardinals ([[supercompact]], [[strongly compact]], etc.). |
$\kappa$ is then super $n$-huge if for all ordinals $\theta$ there is a $\lambda>\theta$ such that $\kappa$ is $n$-huge with target $\lambda$, i.e. $\lambda_n$ can be made arbitrarily large. <cite>Kanamori2009:HigherInfinite</cite> | $\kappa$ is then super $n$-huge if for all ordinals $\theta$ there is a $\lambda>\theta$ such that $\kappa$ is $n$-huge with target $\lambda$, i.e. $\lambda_n$ can be made arbitrarily large. <cite>Kanamori2009:HigherInfinite</cite> | ||
Revision as of 12:59, 5 December 2017
Huge cardinals (and their variants) were introduced by Kenneth Kunen in 1972 as a very large cardinal axiom. Kenneth Kunen first used them to prove that the consistency of the existence of a huge cardinal implies the consistency of $\text{ZFC}$+"there is a $\aleph_2$-saturated $\sigma$-complete ideal on $\omega_1$". It is now known that only a Woodin cardinal is needed for this result. [1]
Contents
Definitions
Their formulation is similar to that of the formulation of superstrong cardinals. A huge cardinal is to a supercompact cardinal as a superstrong cardinal is to a strong cardinal, more precisely. The definition is part of a generalized phenomenon known as the "double helix", in which for some large cardinal properties $n$-$P_0$ and $n$-$P_1$, $n$-$P_0$ has less consistency strength than $n$-$P_1$, which has less consistency strength than $(n+1)$-$P_0$, and so on. This phenomenon is seen only around the $n$-fold variants as of modern set theoretic concerns. [2]
Although they are very large, there is a first-order definition which is equivalent to $n$-hugeness, so the $\theta$-th $n$-huge cardinal is first-order definable whenever $\theta$ is first-order definable. This definition can be seen as a (very strong) strengthening of the first-order definition of measurability.
Elementary embedding definitions
The elementary embedding definitions are somewhat standard. Let $j:V\rightarrow M$ be a nontrivial elementary embedding of $V$ into a transitive class $M$ with critical point $\kappa$. Then:
- $\kappa$ is almost $n$-huge with target $\lambda$ iff $\lambda=j^n(\kappa)$ and $M$ is closed under all of its sequences of length less than $\lambda$ (that is, $M^{<\lambda}\subseteq M$).
- $\kappa$ is $n$-huge with target $\lambda$ iff $\lambda=j^n(\kappa)$ and $M$ is closed under all of its sequences of length $\lambda$ ($M^\lambda\subseteq M$).
- $\kappa$ is almost $n$-huge iff it is almost $n$-huge with target $\lambda$ for some $\lambda$.
- $\kappa$ is $n$-huge iff it is $n$-huge with target $\lambda$ for some $\lambda$.
- $\kappa$ is super almost $n$-huge iff for every $\gamma$, there is some $\lambda>\gamma$ for which $\kappa$ is almost $n$-huge with target $\lambda$ (that is, the target can be made arbitrarily large).
- $\kappa$ is super $n$-huge iff for every $\gamma$, there is some $\lambda>\gamma$ for which $\kappa$ is $n$-huge with target $\lambda$.
- $\kappa$ is almost huge, huge, super almost huge, and superhuge iff it is almost 1-huge, 1-huge, etc. respectively.
Ultrafilter definition
The first-order definition of $n$-huge is somewhat similar to measurability. Specifically, $\kappa$ is measurable iff there is a nonprincipal $\kappa$-complete ultrafilter, $U$, over $\kappa$. A cardinal $\kappa$ is $n$-huge with target $\lambda$ iff there is a normal $\kappa$-complete ultrafilter, $U$, over $\mathcal{P}(\lambda)$, and cardinals $\kappa=\lambda_0<\lambda_1<\lambda_2...<\lambda_{n-1}<\lambda_n=\lambda$ such that:
$$\forall i<n(\{x\subseteq\lambda:\text{order-type}(x\cap\lambda_{i+1})=\lambda_i\}\in U)$$
Where $\text{order-type}(X)$ is the order-type of the poset $(X,\in)$. [1] This definition is, more intuitively, making $U$ very large, like most ultrafilter characterizations of large cardinals (supercompact, strongly compact, etc.). $\kappa$ is then super $n$-huge if for all ordinals $\theta$ there is a $\lambda>\theta$ such that $\kappa$ is $n$-huge with target $\lambda$, i.e. $\lambda_n$ can be made arbitrarily large. [1]
If $j:V\to M$ is such that $M^{j^n(\kappa)}\subseteq M$ (i.e. $j$ witnesses $n$-hugeness) then there is a ultrafilter $U$ as above such that, for all $k\leq n$, $\lambda_k = j^k(\kappa)$, i.e. it is not only $\lambda=\lambda_n$ that is an iterate of $\kappa$ by $j$; all members of the $\lambda_k$ sequence are.
Consistency strength and size
Hugeness exhibits a phenomenon associated with similarly defined large cardinals (the $n$-fold variants) known as the double helix. This phenomenon is when for one $n$-fold variant, letting a cardinal be called $n$-$P_0$ iff it has the property, and another variant, $n$-$P_1$, $n$-$P_0$ is weaker than $n$-$P_1$, which is weaker than $(n+1)$-$P_0$. [2] In the consistency strength hierarchy, here is where these lay (top being weakest):
- measurable = 0-superstrong = almost 0-huge = super almost 0-huge = 0-huge = super 0-huge
- $n$-superstrong
- $n$-fold supercompact
- $(n+1)$-fold strong, $n$-fold extendible
- $(n+1)$-fold Woodin, $n$-fold Vopěnka
- $(n+1)$-fold Shelah
- almost $n$-huge
- super almost $n$-huge
- $n$-huge
- super $n$-huge
- $(n+1)$-superstrong
All huge variants lay at the top of the double helix restricted to some natural number $n$, although each are bested by I3 cardinals (the critical points of the I3 elementary embeddings). In fact, every I3 is preceeded by a stationary set of $n$-huge cardinals, for all $n$. [1]
Similarly, every huge cardinal $\kappa$ is almost huge, and there is a normal measure over $\kappa$ which contains every almost huge cardinal $\lambda<\kappa$. Every superhuge cardinal $\kappa$ is extendible and there is a normal measure over $\kappa$ which contains every extendible cardinal $\lambda<\kappa$. Every $(n+1)$-huge cardinal $\kappa$ has a normal measure which contains every cardinal $\lambda$ such that $V_\kappa\models$"$\lambda$ is super $n$-huge". [1]
In terms of size, however, the least $n$-huge cardinal is smaller than the least supercompact cardinal (assuming both exist). [1] This is because $n$-huge cardinals have upward reflection properties, while supercompacts have downward reflection properties. Thus for any $\kappa$ which is supercompact and has an $n$-huge cardinal above it, $\kappa$ "reflects downward" that $n$-huge cardinal: there are $\kappa$-many $n$-huge cardinals below $\kappa$. On the other hand, the least super $n$-huge cardinals have both upward and downward reflection properties, and are all much larger than the least supercompact cardinal. It is notable that, while almost 2-huge cardinals have higher consistency strength than superhuge cardinals, the least almost 2-huge is much smaller than the least super almost huge.
Every $n$-huge cardinal is $m$-huge for every $m\leq n$. Similarly with almost $n$-hugeness, super $n$-hugeness, and super almost $n$-hugeness. Every almost huge cardinal is Vopěnka (therefore the consistency of the existence of an almost-huge cardinal implies the consistency of Vopěnka's principle). [1]
References
- Kanamori, Akihiro. The higher infinite. Second, Springer-Verlag, Berlin, 2009. (Large cardinals in set theory from their beginnings, Paperback reprint of the 2003 edition) www bibtex
- Kentaro, Sato. Double helix in large large cardinals and iteration ofelementary embeddings. , 2007. www bibtex