Difference between revisions of "Huge"
Zetapology (Talk | contribs) m (→Consistency strength and size: added relation to strong cardinals) |
(→Relative consistency results) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 24: | Line 24: | ||
=== Ultrahuge cardinals === | === Ultrahuge cardinals === | ||
− | A cardinal $\kappa$ is '''$\lambda$-ultrahuge''' for $\lambda>\kappa$ if there exists a nontrivial elementary embedding $j:V\to M$ for some transitive class $M$ such that $ | + | A cardinal $\kappa$ is '''$\lambda$-ultrahuge''' for $\lambda>\kappa$ if there exists a nontrivial elementary embedding $j:V\to M$ for some transitive class $M$ such that $j(\kappa)>\lambda$, $M^{j(\kappa)}\subseteq M$ and $V_{j(\lambda)}\subseteq M$. A cardinal is '''ultrahuge''' if it is $\lambda$-ultrahuge for all $\lambda\geq\kappa$. [http://logicatorino.altervista.org/slides/150619tsaprounis.pdf] Notice how similar this definition is to the alternative characterization of [[extendible]] cardinals. Furthermore, this definition can be extended in the obvious way to define $\lambda$-ultra n-hugeness and ultra n-hugeness, as well as the "''almost''" variants. |
=== Ultrafilter definition === | === Ultrafilter definition === | ||
Line 35: | Line 35: | ||
As an example, $\kappa$ is 1-huge with target $\lambda$ iff there is a normal $\kappa$-complete ultrafilter, $U$, over $\mathcal{P}(\lambda)$ such that $\{x\subseteq\lambda:\text{order-type}(x)=\kappa\}\in U$. The reason why this would be so surprising is that every set $x\subseteq\lambda$ with every set of order-type $\kappa$ would be in the ultrafilter; that is, every set containing $\{x\subseteq\lambda:\text{order-type}(x)=\kappa\}$ as a subset is considered a "large set." | As an example, $\kappa$ is 1-huge with target $\lambda$ iff there is a normal $\kappa$-complete ultrafilter, $U$, over $\mathcal{P}(\lambda)$ such that $\{x\subseteq\lambda:\text{order-type}(x)=\kappa\}\in U$. The reason why this would be so surprising is that every set $x\subseteq\lambda$ with every set of order-type $\kappa$ would be in the ultrafilter; that is, every set containing $\{x\subseteq\lambda:\text{order-type}(x)=\kappa\}$ as a subset is considered a "large set." | ||
+ | |||
+ | === Coherent sequence characterization of almost hugeness === | ||
== Consistency strength and size == | == Consistency strength and size == | ||
Line 65: | Line 67: | ||
Every almost $n$-huge cardinal with targets $\lambda_1,\lambda_2...\lambda_n$ is also [[supercompact|$\theta$-supercompact]] for each $\theta<\lambda_n$, and every $n$-huge cardinal with targets $\lambda_1,\lambda_2...\lambda_n$ is also $\lambda_n$-supercompact. | Every almost $n$-huge cardinal with targets $\lambda_1,\lambda_2...\lambda_n$ is also [[supercompact|$\theta$-supercompact]] for each $\theta<\lambda_n$, and every $n$-huge cardinal with targets $\lambda_1,\lambda_2...\lambda_n$ is also $\lambda_n$-supercompact. | ||
− | === $\omega$- | + | === The $\omega$-huge cardinals === |
A cardinal $\kappa$ is '''almost $\omega$-huge''' iff there is some transitive model $M$ and an elementary embedding $j:V\prec M$ with critical point $\kappa$ such that $M^{<\lambda}\subset M$ where $\lambda$ is the smallest cardinal above $\kappa$ such that $j(\lambda)=\lambda$. Similarly, $\kappa$ is '''$\omega$-huge''' iff the model $M$ can be required to have $M^\lambda\subset M$. | A cardinal $\kappa$ is '''almost $\omega$-huge''' iff there is some transitive model $M$ and an elementary embedding $j:V\prec M$ with critical point $\kappa$ such that $M^{<\lambda}\subset M$ where $\lambda$ is the smallest cardinal above $\kappa$ such that $j(\lambda)=\lambda$. Similarly, $\kappa$ is '''$\omega$-huge''' iff the model $M$ can be required to have $M^\lambda\subset M$. | ||
Sadly, $\omega$-huge cardinals are inconsistent with ZFC by a version of Kunen's inconsistency theorem. Now, $\omega$-hugeness is used to describe critical points of [[rank-into-rank|I1 embeddings]]. | Sadly, $\omega$-huge cardinals are inconsistent with ZFC by a version of Kunen's inconsistency theorem. Now, $\omega$-hugeness is used to describe critical points of [[rank-into-rank|I1 embeddings]]. | ||
+ | |||
+ | == Relative consistency results == | ||
+ | |||
+ | === Hugeness of $\omega_1$ === | ||
+ | |||
+ | In [https://projecteuclid.org/euclid.rmjm/1181073173] it is shown that if $\text{ZFC +}$ "there is a huge cardinal" is consistent then so is $\text{ZF +}$ "$\omega_1$ is a huge cardinal" (with the ultrafilter characterization of hugeness). | ||
+ | |||
+ | === Generalizations of Chang's conjecture === | ||
+ | |||
+ | === Cardinal arithmetic in $\text{ZF}$ === | ||
+ | |||
+ | If there is an almost huge cardinal then there is a model of $\text{ZF+}\neg\text{AC}$ in which every successor cardinal is a [[Ramsey]] cardinal. It follows that (1) for all inner models $W$ of $\text{ZFC}$ and every singular cardinal $\kappa$, one has $\kappa^{+W} < \kappa^+$ and that (2) for all ordinal $\alpha$ there is no injection $\aleph_{\alpha+1}\to 2^{\aleph_\alpha}$. This in turn imply the failure of the [[square principle]] at every infinite cardinal (and consequently $\text{AD}^{L(\mathbb{R})}$, see [[determinacy]]). [https://mathoverflow.net/questions/206090/what-consistency-results-follow-the-assumption-forall-alpha-aleph-alpha1] | ||
{{References}} | {{References}} |
Revision as of 09:38, 10 October 2018
Huge cardinals (and their variants) were introduced by Kenneth Kunen in 1972 as a very large cardinal axiom. Kenneth Kunen first used them to prove that the consistency of the existence of a huge cardinal implies the consistency of $\text{ZFC}$+"there is a $\omega_2$-saturated $\sigma$-ideal on $\omega_1$". It is now known that only a Woodin cardinal is needed for this result. However, the consistency of the existence of an $\omega_2$-complete $\omega_3$-saturated $\sigma$-ideal on $\omega_2$, as far as the set theory world is concerned, still requires an almost huge cardinal. [1]
Definitions
Their formulation is similar to that of the formulation of superstrong cardinals. A huge cardinal is to a supercompact cardinal as a superstrong cardinal is to a strong cardinal, more precisely. The definition is part of a generalized phenomenon known as the "double helix", in which for some large cardinal properties n-$P_0$ and n-$P_1$, n-$P_0$ has less consistency strength than n-$P_1$, which has less consistency strength than (n+1)-$P_0$, and so on. This phenomenon is seen only around the n-fold variants as of modern set theoretic concerns. [2]
Although they are very large, there is a first-order definition which is equivalent to n-hugeness, so the $\theta$-th n-huge cardinal is first-order definable whenever $\theta$ is first-order definable. This definition can be seen as a (very strong) strengthening of the first-order definition of measurability.
Elementary embedding definitions
The elementary embedding definitions are somewhat standard. Let $j:V\rightarrow M$ be a nontrivial elementary embedding of $V$ into a transitive class $M$ with critical point $\kappa$. Then:
- $\kappa$ is almost n-huge with target $\lambda$ iff $\lambda=j^n(\kappa)$ and $M$ is closed under all of its sequences of length less than $\lambda$ (that is, $M^{<\lambda}\subseteq M$).
- $\kappa$ is n-huge with target $\lambda$ iff $\lambda=j^n(\kappa)$ and $M$ is closed under all of its sequences of length $\lambda$ ($M^\lambda\subseteq M$).
- $\kappa$ is almost n-huge iff it is almost n-huge with target $\lambda$ for some $\lambda$.
- $\kappa$ is n-huge iff it is n-huge with target $\lambda$ for some $\lambda$.
- $\kappa$ is super almost n-huge iff for every $\gamma$, there is some $\lambda>\gamma$ for which $\kappa$ is almost n-huge with target $\lambda$ (that is, the target can be made arbitrarily large).
- $\kappa$ is super n-huge iff for every $\gamma$, there is some $\lambda>\gamma$ for which $\kappa$ is n-huge with target $\lambda$.
- $\kappa$ is almost huge, huge, super almost huge, and superhuge iff it is almost 1-huge, 1-huge, etc. respectively.
Ultrahuge cardinals
A cardinal $\kappa$ is $\lambda$-ultrahuge for $\lambda>\kappa$ if there exists a nontrivial elementary embedding $j:V\to M$ for some transitive class $M$ such that $j(\kappa)>\lambda$, $M^{j(\kappa)}\subseteq M$ and $V_{j(\lambda)}\subseteq M$. A cardinal is ultrahuge if it is $\lambda$-ultrahuge for all $\lambda\geq\kappa$. [1] Notice how similar this definition is to the alternative characterization of extendible cardinals. Furthermore, this definition can be extended in the obvious way to define $\lambda$-ultra n-hugeness and ultra n-hugeness, as well as the "almost" variants.
Ultrafilter definition
The first-order definition of n-huge is somewhat similar to measurability. Specifically, $\kappa$ is measurable iff there is a nonprincipal $\kappa$-complete ultrafilter, $U$, over $\kappa$. A cardinal $\kappa$ is n-huge with target $\lambda$ iff there is a normal $\kappa$-complete ultrafilter, $U$, over $\mathcal{P}(\lambda)$, and cardinals $\kappa=\lambda_0<\lambda_1<\lambda_2...<\lambda_{n-1}<\lambda_n=\lambda$ such that:
$$\forall i<n(\{x\subseteq\lambda:\text{order-type}(x\cap\lambda_{i+1})=\lambda_i\}\in U)$$
Where $\text{order-type}(X)$ is the order-type of the poset $(X,\in)$. [1] $\kappa$ is then super n-huge if for all ordinals $\theta$ there is a $\lambda>\theta$ such that $\kappa$ is n-huge with target $\lambda$, i.e. $\lambda_n$ can be made arbitrarily large. If $j:V\to M$ is such that $M^{j^n(\kappa)}\subseteq M$ (i.e. $j$ witnesses n-hugeness) then there is a ultrafilter $U$ as above such that, for all $k\leq n$, $\lambda_k = j^k(\kappa)$, i.e. it is not only $\lambda=\lambda_n$ that is an iterate of $\kappa$ by $j$; all members of the $\lambda_k$ sequence are.
As an example, $\kappa$ is 1-huge with target $\lambda$ iff there is a normal $\kappa$-complete ultrafilter, $U$, over $\mathcal{P}(\lambda)$ such that $\{x\subseteq\lambda:\text{order-type}(x)=\kappa\}\in U$. The reason why this would be so surprising is that every set $x\subseteq\lambda$ with every set of order-type $\kappa$ would be in the ultrafilter; that is, every set containing $\{x\subseteq\lambda:\text{order-type}(x)=\kappa\}$ as a subset is considered a "large set."
Coherent sequence characterization of almost hugeness
Consistency strength and size
Hugeness exhibits a phenomenon associated with similarly defined large cardinals (the n-fold variants) known as the double helix. This phenomenon is when for one n-fold variant, letting a cardinal be called n-$P_0$ iff it has the property, and another variant, n-$P_1$, n-$P_0$ is weaker than n-$P_1$, which is weaker than (n+1)-$P_0$. [2] In the consistency strength hierarchy, here is where these lay (top being weakest):
- measurable = 0-superstrong = 0-huge
- n-superstrong
- n-fold supercompact
- (n+1)-fold strong, n-fold extendible
- (n+1)-fold Woodin, n-fold Vopěnka
- (n+1)-fold Shelah
- almost n-huge
- super almost n-huge
- n-huge
- super n-huge
- ultra n-huge
- (n+1)-superstrong
All huge variants lay at the top of the double helix restricted to some natural number n, although each are bested by I3 cardinals (the critical points of the I3 elementary embeddings). In fact, every I3 is preceeded by a stationary set of n-huge cardinals, for all n. [1]
Similarly, every huge cardinal $\kappa$ is almost huge, and there is a normal measure over $\kappa$ which contains every almost huge cardinal $\lambda<\kappa$. Every superhuge cardinal $\kappa$ is extendible and there is a normal measure over $\kappa$ which contains every extendible cardinal $\lambda<\kappa$. Every (n+1)-huge cardinal $\kappa$ has a normal measure which contains every cardinal $\lambda$ such that $V_\kappa\models$"$\lambda$ is super n-huge" [1], in fact it contains every cardinal $\lambda$ such that $V_\kappa\models$"$\lambda$ is ultra n-huge".
Every n-huge cardinal is m-huge for every m<n. Similarly with almost n-hugeness, super n-hugeness, and super almost n-hugeness. Every almost huge cardinal is Vopěnka (therefore the consistency of the existence of an almost-huge cardinal implies the consistency of Vopěnka's principle). [1] Every ultra n-huge is super n-huge and a stationary limit of super n-huge cardinals. Every super almost (n+1)-huge is ultra n-huge and a stationary limit of ultra n-huge cardinals.
In terms of size, however, the least n-huge cardinal is smaller than the least supercompact cardinal (assuming both exist). [1] This is because n-huge cardinals have upward reflection properties, while supercompacts have downward reflection properties. Thus for any $\kappa$ which is supercompact and has an n-huge cardinal above it, $\kappa$ "reflects downward" that n-huge cardinal: there are $\kappa$-many n-huge cardinals below $\kappa$. On the other hand, the least super n-huge cardinals have both upward and downward reflection properties, and are all much larger than the least supercompact cardinal. It is notable that, while almost 2-huge cardinals have higher consistency strength than superhuge cardinals, the least almost 2-huge is much smaller than the least super almost huge.
While not every $n$-huge cardinal is strong, if $\kappa$ is almost $n$-huge with targets $\lambda_1,\lambda_2...\lambda_n$, then $\kappa$ is $\lambda_n$-strong as witnessed by the generated $j:V\prec M$. This is because $j^n(\kappa)=\lambda_n$ is measurable and therefore $\beth_{\lambda_n}=\lambda_n$ and so $V_{\lambda_n}=H_{\lambda_n}$ and because $M^{<\lambda_n}\subset M$, $H_\theta\subset M$ for each $\theta<\lambda_n$ and so $\cup\{H_\theta:\theta<\lambda_n\} = \cup\{V_\theta:\theta<\lambda_n\} = V_{\lambda_n}\subset M$.
Every almost $n$-huge cardinal with targets $\lambda_1,\lambda_2...\lambda_n$ is also $\theta$-supercompact for each $\theta<\lambda_n$, and every $n$-huge cardinal with targets $\lambda_1,\lambda_2...\lambda_n$ is also $\lambda_n$-supercompact.
The $\omega$-huge cardinals
A cardinal $\kappa$ is almost $\omega$-huge iff there is some transitive model $M$ and an elementary embedding $j:V\prec M$ with critical point $\kappa$ such that $M^{<\lambda}\subset M$ where $\lambda$ is the smallest cardinal above $\kappa$ such that $j(\lambda)=\lambda$. Similarly, $\kappa$ is $\omega$-huge iff the model $M$ can be required to have $M^\lambda\subset M$.
Sadly, $\omega$-huge cardinals are inconsistent with ZFC by a version of Kunen's inconsistency theorem. Now, $\omega$-hugeness is used to describe critical points of I1 embeddings.
Relative consistency results
Hugeness of $\omega_1$
In [2] it is shown that if $\text{ZFC +}$ "there is a huge cardinal" is consistent then so is $\text{ZF +}$ "$\omega_1$ is a huge cardinal" (with the ultrafilter characterization of hugeness).
Generalizations of Chang's conjecture
Cardinal arithmetic in $\text{ZF}$
If there is an almost huge cardinal then there is a model of $\text{ZF+}\neg\text{AC}$ in which every successor cardinal is a Ramsey cardinal. It follows that (1) for all inner models $W$ of $\text{ZFC}$ and every singular cardinal $\kappa$, one has $\kappa^{+W} < \kappa^+$ and that (2) for all ordinal $\alpha$ there is no injection $\aleph_{\alpha+1}\to 2^{\aleph_\alpha}$. This in turn imply the failure of the square principle at every infinite cardinal (and consequently $\text{AD}^{L(\mathbb{R})}$, see determinacy). [3]
References
- Kanamori, Akihiro. The higher infinite. Second, Springer-Verlag, Berlin, 2009. (Large cardinals in set theory from their beginnings, Paperback reprint of the 2003 edition) www bibtex
- Kentaro, Sato. Double helix in large large cardinals and iteration ofelementary embeddings. , 2007. www bibtex