Ineffable cardinal
Ineffable cardinals were introduced by Jensen and Kunen in [1]. An uncountable regular cardinal $\kappa$ is ineffable if for every sequence $\langle A_\alpha\mid \alpha<\kappa\rangle$ with $A_\alpha\subseteq \alpha$ there is $A\subseteq\kappa$ such that the set $S=\{\alpha<\kappa\mid A\cap \kappa=A_\alpha\}$ is stationary. Equivalently an uncountable regular $\kappa$ is ineffable if and only if for every function $F:[\kappa]^2\rightarrow 2$ there is a stationary $H\subseteq\kappa$ such that $F\upharpoonright [H]^2$ is constant [1]. This second characterization strengthens a characterization of weakly compact cardinals which requires that there exist such an $H$ of size $\kappa$.
If $\kappa$ is ineffable, then $\diamondsuit_\kappa$ holds and there cannot be a slim $\kappa$-Kurepa tree [1] . A $\kappa$-Kurepa tree is a tree of height $\kappa$ having levels of size less than $\kappa$ and at least $\kappa^+$-many branches. A $\kappa$-Kurepa tree is slim if every infinite level $\alpha$ has size at most $|\alpha|$.
Contents
Ineffable cardinals and the constructible universe
Ineffable cardinals are downward absolute to $L$. In $L$, an inaccessible cardinal $\kappa$ is ineffable if and only if there are no slim $\kappa$-Kurepa trees. Thus, for inaccessible cardinals, in $L$, ineffability is completely characterized using slim Kurepa trees. [1]
If $0^\sharp$ exists, then every Silver indiscernible is ineffable in $L$. [2]
Relations with other large cardinals
- Measurable cardinals are ineffable and stationary limits of ineffable cardinals.
- Ineffable cardinals are $\Pi^1_2$-indescribable [1] and hence limits of weakly compact cardinals [3].
- The least ineffable cardinal is larger than the least totally indescribable cardinal. [1]
Weakly ineffable cardinal
Weakly ineffable cardinals (also called almost ineffable) were introduced by Jensen and Kunen in [1] as a weakening of ineffable cardinals. An uncountable regular cardinal $\kappa$ is weakly ineffable if for every sequence $\langle A_\alpha\mid \alpha<\kappa\rangle$ with $A_\alpha\subseteq \alpha$ there is $A\subseteq\kappa$ such that the set $S=\{\alpha<\kappa\mid A\cap \kappa=A_\alpha\}$ has size $\kappa$.
- Weakly ineffable cardinals are downward absolute to $L$.
Subtle cardinal
References
- Jensen, Ronald and Kunen, Kenneth. Some combinatorial properties of $L$ and $V$. Unpublished, 1969. www bibtex
- Jech, Thomas J. Set Theory. Third, Springer-Verlag, Berlin, 2003. (The third millennium edition, revised and expanded) www bibtex