Difference between revisions of "Ineffable"

From Cantor's Attic
Jump to: navigation, search
(Created page with "A uncountable regular cardinal $\kappa$ is ineffable if for every sequence $\langle A_\alpha\mid \alpha<\kappa\rangle$ with $A_\alpha\subseteq \alpha$ there is $A\subseteq\kappa$...")
(No difference)

Revision as of 07:20, 12 January 2012

A uncountable regular cardinal $\kappa$ is ineffable if for every sequence $\langle A_\alpha\mid \alpha<\kappa\rangle$ with $A_\alpha\subseteq \alpha$ there is $A\subseteq\kappa$ such that the set $S=\{\alpha<\kappa\mid A\cap \kappa=A_\alpha\}$ is stationary.