Difference between revisions of "Library"

From Cantor's Attic
Jump to: navigation, search
(+1)
(Bagaria2012:CnCardinals)
 
Line 69: Line 69:
 
     PAGES = {95-120},
 
     PAGES = {95-120},
 
       DOI = {10.4064/fm194-2-1},
 
       DOI = {10.4064/fm194-2-1},
 +
}
 +
 +
#Bagaria2012:CnCardinals bibtex=@article{Bagaria2012:CnCardinals,
 +
AUTHOR = {Bagaria, Joan},
 +
TITLE = {$C^{(n)}$-cardinals},
 +
journal = {Archive for Mathematical Logic},
 +
        YEAR = {2012},
 +
        volume = {51},
 +
        number = {3--4},
 +
        pages = {213--240},
 +
        DOI = {10.1007/s00153-011-0261-8},
 +
        URL = {http://www.mittag-leffler.se/sites/default/files/IML-0910f-26.pdf}
 
}
 
}
  
 
#BagariaCasacubertaMathiasRosicky2012:OrthogonalityClasses bibtex=@article{BagariaCasacubertaMathiasRosicky2012:OrthogonalityClasses,
 
#BagariaCasacubertaMathiasRosicky2012:OrthogonalityClasses bibtex=@article{BagariaCasacubertaMathiasRosicky2012:OrthogonalityClasses,
 
AUTHOR = {Bagaria, Joan and Casacuberta, Carles and Mathias, A. R. D. and Rosický, Jiří},
 
AUTHOR = {Bagaria, Joan and Casacuberta, Carles and Mathias, A. R. D. and Rosický, Jiří},
TITLE = "Definable orthogonality classes in accessible categories are small",
+
TITLE = {Definable orthogonality classes in accessible categories are small},
 
journal = {Journal of the European Mathematical Society},
 
journal = {Journal of the European Mathematical Society},
 
         volume = {17},
 
         volume = {17},

Latest revision as of 08:33, 12 September 2019

Step up the ladder towards wisdom, photo by Sigfrid Lundberg

Welcome to the library, our central repository for references cited here on Cantor's attic.

Library holdings

  1. Abramson, Fred and Harrington, Leo and Kleinberg, Eugene and Zwicker, William. Flipping properties: a unifying thread in the theory of large cardinals. Ann Math Logic 12(1):25--58, 1977. MR   bibtex
  2. Baaz, M and Papadimitriou, CH and Putnam, HW and Scott, DS and Harper, CL. Kurt Gödel and the Foundations of Mathematics: Horizons of Truth. Cambridge University Press, 2011. www   bibtex
  3. Bagaria, Joan. Axioms of generic absoluteness. Logic Colloquium 2002 , 2006. www   DOI   bibtex
  4. Bagaria, Joan and Bosch, Roger. Proper forcing extensions and Solovay models. Archive for Mathematical Logic , 2004. www   DOI   bibtex
  5. Bagaria, Joan and Bosch, Roger. Generic absoluteness under projective forcing. Fundamenta Mathematicae 194:95-120, 2007. DOI   bibtex
  6. Bagaria, Joan. $C^{(n)}$-cardinals. Archive for Mathematical Logic 51(3--4):213--240, 2012. www   DOI   bibtex
  7. Bagaria, Joan and Casacuberta, Carles and Mathias, A R D and Rosický, Jiří. Definable orthogonality classes in accessible categories are small. Journal of the European Mathematical Society 17(3):549--589. arχiv   bibtex
  8. Bagaria, Joan and Hamkins, Joel David and Tsaprounis, Konstantinos and Usuba, Toshimichi. Superstrong and other large cardinals are never Laver indestructible. Archive for Mathematical Logic 55(1-2):19--35, 2013. www   arχiv   DOI   bibtex
  9. Bagaria, Joan. Large Cardinals beyond Choice. , 2017. www   bibtex
  10. Bagaria, Joan and Gitman, Victoria and Schindler, Ralf. Generic {V}opěnka's {P}rinciple, remarkable cardinals, and the weak {P}roper {F}orcing {A}xiom. Arch Math Logic 56(1-2):1--20, 2017. www   DOI   MR   bibtex
  11. Baumgartner, James. Ineffability properties of cardinals. I. Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, pp. 109--130. Colloq. Math. Soc. János Bolyai, Vol. 10, Amsterdam, 1975. MR   bibtex
  12. Blass, Andreas. Chapter 6: Cardinal characteristics of the continuum. Handbook of Set Theory , 2010. www   bibtex
  13. Blass, Andreas. Exact functors and measurable cardinals.. Pacific J Math 63(2):335--346, 1976. www   bibtex
  14. Boney, Will. Model Theoretic Characterizations of Large Cardinals. arχiv   bibtex
  15. Bosch, Roger. Small Definably-large Cardinals. Set Theory Trends in Mathematics pp. 55-82, 2006. DOI   bibtex
  16. Cantor, Georg. Contributions to the Founding of the Theory of Transfinite Numbers. Dover, New York, 1955. (Original year was 1915) www   bibtex
  17. Carmody, Erin Kathryn. Force to change large cardinal strength. , 2015. www   arχiv   bibtex
  18. Carmody, Erin and Gitman, Victoria and Habič, Miha E. A Mitchell-like order for Ramsey and Ramsey-like cardinals. , 2016. arχiv   bibtex
  19. Cody, Brent, Gitik, Moti, Hamkins, Joel David, and Schanker, Jason. The Least Weakly Compact Cardinal Can Be Unfoldable, Weakly Measurable and Nearly θ-Supercompact. , 2013. arχiv   bibtex
  20. Cody, Brent and Gitman, Victoria. Easton's theorem for Ramsey and strongly Ramsey cardinals. Annals of Pure and Applied Logic 166(9):934 - 952, 2015. www   DOI   bibtex
  21. Corazza, Paul. The Wholeness Axiom and Laver sequences. Annals of Pure and Applied Logic pp. 157--260, October, 2000. bibtex
  22. Corazza, Paul. The gap between ${\rm I}_3$ and the wholeness axiom. Fund Math 179(1):43--60, 2003. www   DOI   MR   bibtex
  23. Corazza, Paul. The Axiom of Infinity and transformations $j: V \to V$. Bulletin of Symbolic Logic 16(1):37--84, 2010. www   DOI   bibtex
  24. Dimonte, Vincenzo. I0 and rank-into-rank axioms. , 2017. arχiv   bibtex
  25. Dimopoulos, Stamatis. Woodin for strong compactness cardinals. The Journal of Symbolic Logic 84(1):301–319, 2019. arχiv   DOI   bibtex
  26. Dodd, Anthony and Jensen, Ronald. The core model. Ann Math Logic 20(1):43--75, 1981. www   DOI   MR   bibtex
  27. Donder, Hans-Dieter and Koepke, Peter. On the Consistency Strength of 'Accessible' Jónsson Cardinals and of the Weak Chang Conjecture. Annals of Pure and Applied Logic , 1998. www   DOI   bibtex
  28. Donder, Hans-Dieter and Levinski, Jean-Pierre. Some principles related to Chang's conjecture. Annals of Pure and Applied Logic , 1989. www   DOI   bibtex
  29. Drake, Frank. Set Theory: An Introduction to Large Cardinals. North-Holland Pub. Co., 1974. bibtex
  30. Erdős, Paul and Hajnal, Andras. Some remarks concerning our paper ``On the structure of set-mappings''. Non-existence of a two-valued $\sigma $-measure for the first uncountable inaccessible cardinal. Acta Math Acad Sci Hungar 13:223--226, 1962. MR   bibtex
  31. Erdős, Paul and Hajnal, Andras. On the structure of set-mappings. Acta Math Acad Sci Hungar 9:111--131, 1958. MR   bibtex
  32. Eskrew, Monroe and Hayut, Yair. On the consistency of local and global versions of Chang's Conjecture. , 2016. arχiv   bibtex
  33. Esser, Olivier. Inconsistency of GPK+AFA. Mathematical Logic Quarterly 42:104--108, 1996. www   DOI   bibtex
  34. Esser, Olivier. An Interpretation of the Zermelo-Fraenkel Set Theory and the Kelley-Morse Set Theory in a Positive Theory. Mathematical Logic Quarterly 43:369--377, 1997. www   DOI   bibtex
  35. Esser, Olivier. On the Consistency of a Positive Theory. Mathematical Logic Quarterly 45:105--116, 1999. www   DOI   bibtex
  36. Esser, Olivier. Inconsistency of the Axiom of Choice with the Positive Theory $GPK^+_\infty$. Journal of Symbolic Logic 65(4):1911--1916, Dec., 2000. www   DOI   bibtex
  37. Esser, Olivier. On the axiom of extensionality in the positive set theory. Mathematical Logic Quarterly 19:97--100, 2003. www   DOI   bibtex
  38. Evans, C D A and Hamkins, Joel David. Transfinite game values in infinite chess. (under review) www   arχiv   bibtex
  39. Feng, Qi. A hierarchy of Ramsey cardinals. Annals of Pure and Applied Logic 49(3):257 - 277, 1990. DOI   bibtex
  40. Foreman, Matthew and Kanamori, Akihiro. Handbook of Set Theory. First, Springer, 2010. (This book is actually a compendium of articles from multiple authors) www   bibtex
  41. Forti, M and Hinnion, R. The Consistency Problem for Positive Comprehension Principles. J Symbolic Logic 54(4):1401--1418, 1989. bibtex
  42. Friedman, Harvey M. Subtle cardinals and linear orderings. , 1998. www   bibtex
  43. Fuchs, Gunter and Hamkins, Joel David and Reitz, Jonas. Set-theoretic geology. Annals of Pure and Applied Logic 166(4):464 - 501, 2015. www   arχiv   DOI   bibtex
  44. Gaifman, Haim. Elementary embeddings of models of set-theory and certain subtheories. Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967), pp. 33--101, Providence R.I., 1974. MR   bibtex
  45. Gitman, Victoria. Ramsey-like cardinals. The Journal of Symbolic Logic 76(2):519-540, 2011. www   arχiv   MR   bibtex
  46. Gitman, Victoria and Welch, Philip. Ramsey-like cardinals II. J Symbolic Logic 76(2):541--560, 2011. www   arχiv   MR   bibtex
  47. Gitman, Victoria and Hamkins, Joel David. A model of the generic Vopěnka principle in which the ordinals are not Mahlo. , 2018. arχiv   bibtex
  48. Gitman, Victoria and Johnstone, Thomas A. Indestructibility for Ramsey and Ramsey-like cardinals. (In preparation) www   bibtex
  49. Gitman, Victoria and Shindler, Ralf. Virtual large cardinals. www   bibtex
  50. Goldblatt, Robert. Lectures on the Hyperreals. Springer, 1998. bibtex
  51. Goldstern, Martin and Shelah, Saharon. The Bounded Proper Forcing Axiom. J Symbolic Logic 60(1):58--73, 1995. www   bibtex
  52. Hamkins, Joel David and Lewis, Andy. Infinite time Turing machines. J Symbolic Logic 65(2):567--604, 2000. www   arχiv   DOI   MR   bibtex
  53. Hamkins, Joel David. The wholeness axioms and V=HOD. Arch Math Logic 40(1):1--8, 2001. www   arχiv   DOI   MR   bibtex
  54. Hamkins, Joel David. Infinite time Turing machines. Minds and Machines 12(4):521--539, 2002. (special issue devoted to hypercomputation) www   arχiv   bibtex
  55. Hamkins, Joel David. Supertask computation. Classical and new paradigms of computation and their complexity hierarchies23:141--158, Dordrecht, 2004. (Papers of the conference ``Foundations of the Formal Sciences III'' held in Vienna, September 21-24, 2001) www   arχiv   DOI   MR   bibtex
  56. Hamkins, Joel David. Unfoldable cardinals and the GCH. , 2008. arχiv   bibtex
  57. Hamkins, Joel David. Tall cardinals. MLQ Math Log Q 55(1):68--86, 2009. www   DOI   MR   bibtex
  58. Hamkins, Joel David and Johnstone, Thomas A. Indestructible strong un-foldability. Notre Dame J Form Log 51(3):291--321, 2010. bibtex
  59. Hamkins, Joel David and Johnstone, Thomas A. Resurrection axioms and uplifting cardinals. , 2014. www   arχiv   bibtex
  60. Hamkins, Joel David and Johnstone, Thomas A. Strongly uplifting cardinals and the boldface resurrection axioms. , 2014. arχiv   bibtex
  61. Hauser, Kai. Indescribable Cardinals and Elementary Embeddings. 56(2):439 - 457, 1991. www   DOI   bibtex
  62. Holy, Peter and Schlicht, Philipp. A hierarchy of Ramsey-like cardinals. Fundamenta Mathematicae 242:49-74, 2018. www   arχiv   DOI   bibtex
  63. Jackson, Steve; Ketchersid, Richard; Schlutzenberg, Farmer; Woodin, W Hugh. Determinacy and Jónsson cardinals in $L(\mathbb{R})$. , 2015. arχiv   DOI   bibtex
  64. Jech, Thomas J. Set Theory. Third, Springer-Verlag, Berlin, 2003. (The third millennium edition, revised and expanded) www   bibtex
  65. Jensen, Ronald and Kunen, Kenneth. Some combinatorial properties of $L$ and $V$. Unpublished, 1969. www   bibtex
  66. Kanamori, Akihiro and Magidor, Menachem. The evolution of large cardinal axioms in set theory. Higher set theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977)669:99--275, Berlin, 1978. www   MR   bibtex
  67. Kanamori, Akihiro and Reinhardt, William N and Solovay, Robert M. Strong axioms of infinity and elementary embeddings. , 1978. (In ''Annals of Mathematical Logic'', '''13'''(1978)) www   bibtex
  68. Kanamori, Akihiro and Awerbuch-Friedlander, Tamara. The compleat 0†. Mathematical Logic Quarterly 36(2):133-141, 1990. DOI   bibtex
  69. Kanamori, Akihiro. The higher infinite. Second, Springer-Verlag, Berlin, 2009. (Large cardinals in set theory from their beginnings, Paperback reprint of the 2003 edition) www   bibtex
  70. Kentaro, Sato. Double helix in large large cardinals and iteration ofelementary embeddings. , 2007. www   bibtex
  71. Kunen, Kenneth. Saturated Ideals. J Symbolic Logic 43(1):65--76, 1978. www   bibtex
  72. Koellner, Peter and Woodin, W Hugh. Chapter 23: Large cardinals from Determinacy. Handbook of Set Theory , 2010. www   bibtex
  73. Larson, Paul B. A brief history of determinacy. , 2013. www   bibtex
  74. Laver, Richard. Implications between strong large cardinal axioms. Ann Math Logic 90(1--3):79--90, 1997. MR   bibtex
  75. Leshem, Amir. On the consistency of the definable tree property on $\aleph_1$. J Symbolic Logic 65(3):1204-1214, 2000. arχiv   DOI   bibtex
  76. Maddy, Penelope. Believing the axioms. I. J Symbolic Logic 53(2):181--511, 1988. www   DOI   bibtex
  77. Maddy, Penelope. Believing the axioms. II. J Symbolic Logic 53(3):736--764, 1988. www   DOI   bibtex
  78. Madore, David. A zoo of ordinals. , 2017. www   bibtex
  79. Makowsky, Johann. Vopěnka's Principle and Compact Logics. J Symbol Logic www   bibtex
  80. Mitchell, William J. Jónsson Cardinals, Erdős Cardinals, and the Core Model. J Symbol Logic , 1997. arχiv   bibtex
  81. Mitchell, William J. The Covering Lemma. Handbook of Set Theory , 2001. www   bibtex
  82. Miyamoto, Tadatoshi. A note on weak segments of PFA. Proceedings of the sixth Asian logic conference pp. 175--197, 1998. bibtex
  83. Nielsen, Dan Saattrup and Welch, Philip. Games and Ramsey-like cardinals. , 2018. arχiv   bibtex
  84. Perlmutter, Norman. The large cardinals between supercompact and almost-huge. , 2010. arχiv   bibtex
  85. Rathjen, Michael. The art of ordinal analysis. , 2006. www   bibtex
  86. Schanker, Jason A. Partial near supercompactness. Ann Pure Appl Logic , 2012. (In Press.) www   DOI   bibtex
  87. Schanker, Jason A. Weakly measurable cardinals. MLQ Math Log Q 57(3):266--280, 2011. www   DOI   bibtex
  88. Schanker, Jason A. Weakly measurable cardinals and partial near supercompactness. Ph.D. Thesis, CUNY Graduate Center, 2011. bibtex
  89. Schindler, Ralf-Dieter. Proper forcing and remarkable cardinals. Bull Symbolic Logic 6(2):176--184, 2000. www   DOI   MR   bibtex
  90. Sharpe, Ian and Welch, Philip. Greatly Erdős cardinals with some generalizations to the Chang and Ramsey properties. Ann Pure Appl Logic 162(11):863--902, 2011. www   DOI   MR   bibtex
  91. Shelah, Saharon. Cardinal Arithmetic. Oxford Logic Guides 29, 1994. bibtex
  92. Silver, Jack. A large cardinal in the constructible universe. Fund Math 69:93--100, 1970. MR   bibtex
  93. Silver, Jack. Some applications of model theory in set theory. Ann Math Logic 3(1):45--110, 1971. MR   bibtex
  94. Suzuki, Akira. Non-existence of generic elementary embeddings into the ground model. Tsukuba J Math 22(2):343--347, 1998. MR   bibtex | Abstract
  95. Suzuki, Akira. No elementary embedding from $V$ into $V$ is definable from parameters. J Symbolic Logic 64(4):1591--1594, 1999. www   DOI   MR   bibtex
  96. Trang, Nam and Wilson, Trevor. Determinacy from Strong Compactness of $\omega_1$. , 2016. arχiv   bibtex
  97. Tryba, Jan. On Jónsson cardinals with uncountable cofinality. Israel Journal of Mathematics 49(4), 1983. bibtex
  98. Usuba, Toshimichi. The downward directed grounds hypothesis and very large cardinals. Journal of Mathematical Logic 17(02):1750009, 2017. arχiv   DOI   bibtex
  99. Usuba, Toshimichi. Extendible cardinals and the mantle. Archive for Mathematical Logic 58(1-2):71-75, 2019. arχiv   DOI   bibtex
  100. Viale, Matteo and Weiß, Christoph. On the consistency strength of the proper forcing axiom. Advances in Mathematics 228(5):2672--2687, 2011. arχiv   MR   bibtex
  101. Villaveces, Andrés. Chains of End Elementary Extensions of Models of Set Theory. JSTOR , 1996. arχiv   bibtex
  102. Welch, Philip. Some remarks on the maximality of Inner Models. Logic Colloquium , 1998. www   bibtex
  103. Welch, Philip. The Lengths of Infinite Time Turing Machine Computations. Bulletin of the London Mathematical Society 32(2):129--136, 2000. bibtex
  104. Wilson, Trevor M. Weakly remarkable cardinals, Erdős cardinals, and the generic Vopěnka principle. , 2018. arχiv   bibtex
  105. Woodin, W Hugh. Suitable extender models I. Journal of Mathematical Logic 10(01n02):101-339, 2010. www   DOI   bibtex
  106. Woodin, W Hugh. Suitable extender models II: beyond $\omega$-huge. Journal of Mathematical Logic 11(02):115-436, 2011. www   DOI   bibtex
  107. Zapletal, Jindrich. A new proof of Kunen's inconsistency. Proc Amer Math Soc 124(7):2203--2204, 1996. www   DOI   MR   bibtex

User instructions

Cantor's attic users may make contributions to the library, in bibtex format, and then cite those references in other articles. Edit this page to make your contribution.