Difference between revisions of "Library"
From Cantor's Attic
BartekChom (Talk | contribs) m (→Library holdings: -:P!) |
(Reference for 0# →Library holdings) |
||
(One intermediate revision by one other user not shown) | |||
Line 38: | Line 38: | ||
VOLUME = {216}, | VOLUME = {216}, | ||
PAGES = {207--222}, | PAGES = {207--222}, | ||
+ | } | ||
+ | |||
+ | #ApterGitmanHamkins2012:InnerModelsUsuallyForcing bibtex=@ARTICLE{ApterGitmanHamkins2012:InnerModelsUsuallyForcing, | ||
+ | title = "Inner models with large cardinal features usually obtained by forcing", | ||
+ | author = "Apter, Arthur W and Gitman, Victoria and Hamkins, Joel David", | ||
+ | journal = "Arch. Math. Logic", | ||
+ | publisher = "Springer Science and Business Media LLC", | ||
+ | volume = "51", | ||
+ | number = "3-4", | ||
+ | pages = "257--283", | ||
+ | month = "may", | ||
+ | year = "2012", | ||
+ | language = "en", | ||
+ | eprint = "1111.0856" | ||
} | } | ||
Line 1,012: | Line 1,026: | ||
URL = {http://www.jstor.org/stable/2274520} | URL = {http://www.jstor.org/stable/2274520} | ||
} | } | ||
+ | |||
#Maddy88:BelAxiomsII bibtex=@article{Maddy88:BelAxiomsII, | #Maddy88:BelAxiomsII bibtex=@article{Maddy88:BelAxiomsII, | ||
AUTHOR = {Maddy, Penelope}, | AUTHOR = {Maddy, Penelope}, | ||
Line 1,024: | Line 1,039: | ||
URL = {http://www.jstor.org/stable/2274569} | URL = {http://www.jstor.org/stable/2274569} | ||
} | } | ||
+ | |||
#Madore2017:OrdinalZoo bibtex=@article{Madore2017:OrdinalZoo, | #Madore2017:OrdinalZoo bibtex=@article{Madore2017:OrdinalZoo, | ||
AUTHOR = {Madore, David}, | AUTHOR = {Madore, David}, | ||
Line 1,046: | Line 1,062: | ||
number = {2}, | number = {2}, | ||
pages = {175-189}, | pages = {175-189}, | ||
− | title = {Stable sets, a characterization of $ | + | title = {Stable sets, a characterization of $\beta_2$-models of full second order arithmetic and some related facts}, |
url = {http://eudml.org/doc/214661}, | url = {http://eudml.org/doc/214661}, | ||
volume = {82}, | volume = {82}, | ||
year = {1974}, | year = {1974}, | ||
+ | } | ||
+ | |||
+ | #Martin2001:CharacterizationsSharp bibtex=@paper{Martin2001:CharacterizationsSharp, | ||
+ | author = {Martin, D.}, | ||
+ | language = {eng}, | ||
+ | title = {Characterizations of $0^\sharp$}, | ||
+ | url = {https://web.archive.org/web/20060505193310/http://www.cs.cornell.edu/~djm/math/zerosharp.ps}, | ||
+ | year = {2001}, | ||
} | } | ||
Latest revision as of 19:04, 29 July 2022
Welcome to the library, our central repository for references cited here on Cantor's attic.
Library holdings
- Abramson, Fred and Harrington, Leo and Kleinberg, Eugene and Zwicker, William. Flipping properties: a unifying thread in the theory of large cardinals. Ann Math Logic 12(1):25--58, 1977. MR bibtex
- Apter, Arthur W. Some applications of Sargsyan’s equiconsistency method. Fund Math 216:207--222. bibtex
- Apter, Arthur W and Gitman, Victoria and Hamkins, Joel David. Inner models with large cardinal features usually obtained by forcing. Arch Math Logic 51(3-4):257--283, may, 2012. arχiv bibtex
- Arai, Toshiyasu. A sneak preview of proof theory of ordinals. , 1997. www bibtex
- Arai, Toshiyasu. A simplified ordinal analysis of first-order reflection. , 2019. www bibtex
- Baaz, M and Papadimitriou, CH and Putnam, HW and Scott, DS and Harper, CL. Kurt Gödel and the Foundations of Mathematics: Horizons of Truth. Cambridge University Press, 2011. www bibtex
- Bagaria, Joan. Axioms of generic absoluteness. Logic Colloquium 2002 , 2006. www DOI bibtex
- Bagaria, Joan and Bosch, Roger. Proper forcing extensions and Solovay models. Archive for Mathematical Logic , 2004. www DOI bibtex
- Bagaria, Joan and Bosch, Roger. Generic absoluteness under projective forcing. Fundamenta Mathematicae 194:95-120, 2007. DOI bibtex
- Bagaria, Joan. $C^{(n)}$-cardinals. Archive for Mathematical Logic 51(3--4):213--240, 2012. www arχiv DOI bibtex
- Bagaria, Joan and Casacuberta, Carles and Mathias, A R D and Rosický, Jiří. Definable orthogonality classes in accessible categories are small. Journal of the European Mathematical Society 17(3):549--589. arχiv bibtex
- Bagaria, Joan and Hamkins, Joel David and Tsaprounis, Konstantinos and Usuba, Toshimichi. Superstrong and other large cardinals are never Laver indestructible. Archive for Mathematical Logic 55(1-2):19--35, 2013. www arχiv DOI bibtex
- Bagaria, Joan. Large Cardinals beyond Choice. , 2017. www bibtex
- Bagaria, Joan and Gitman, Victoria and Schindler, Ralf. Generic {V}opěnka's {P}rinciple, remarkable cardinals, and the weak {P}roper {F}orcing {A}xiom. Arch Math Logic 56(1-2):1--20, 2017. www DOI MR bibtex
- Bagaria, Joan and Koellner, Peter and Woodin, W Hugh. Large Cardinals beyond Choice. Bulletin of Symbolic Logic 25(3):283--318, 2019. www DOI bibtex
- Baumgartner, James. Ineffability properties of cardinals. I. Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, pp. 109--130. Colloq. Math. Soc. János Bolyai, Vol. 10, Amsterdam, 1975. MR bibtex
- Blass, Andreas. Chapter 6: Cardinal characteristics of the continuum. Handbook of Set Theory , 2010. www bibtex
- Blass, Andreas. Exact functors and measurable cardinals.. Pacific J Math 63(2):335--346, 1976. www bibtex
- Boney, Will. Model Theoretic Characterizations of Large Cardinals. arχiv bibtex
- Bosch, Roger. Small Definably-large Cardinals. Set Theory Trends in Mathematics pp. 55-82, 2006. DOI bibtex
- Cantor, Georg. Contributions to the Founding of the Theory of Transfinite Numbers. Dover, New York, 1955. (Original year was 1915) www bibtex
- Carmody, Erin Kathryn. Force to change large cardinal strength. , 2015. www arχiv bibtex
- Carmody, Erin and Gitman, Victoria and Habič, Miha E. A Mitchell-like order for Ramsey and Ramsey-like cardinals. , 2016. arχiv bibtex
- Cody, Brent, Gitik, Moti, Hamkins, Joel David, and Schanker, Jason. The Least Weakly Compact Cardinal Can Be Unfoldable, Weakly Measurable and Nearly θ-Supercompact. , 2013. arχiv bibtex
- Cody, Brent and Gitman, Victoria. Easton's theorem for Ramsey and strongly Ramsey cardinals. Annals of Pure and Applied Logic 166(9):934 - 952, 2015. www DOI bibtex
- Corazza, Paul. The Wholeness Axiom and Laver sequences. Annals of Pure and Applied Logic pp. 157--260, October, 2000. bibtex
- Corazza, Paul. The gap between $\mathrm{I}_3$ and the wholeness axiom. Fund Math 179(1):43--60, 2003. www DOI MR bibtex
- Corazza, Paul. The spectrum of elementary embeddings $j : V \to V$. Annals of Pure and Applied Logic 139(1--3):327-399, May, 2006. DOI bibtex
- Corazza, Paul. The Axiom of Infinity and transformations $j: V \to V$. Bulletin of Symbolic Logic 16(1):37--84, 2010. www DOI bibtex
- Daghighi, Ali Sadegh and Pourmahdian, Massoud. On Some Properties of Shelah Cardinals. Bull Iran Math Soc 44(5):1117-1124, October, 2018. www DOI bibtex
- Dimonte, Vincenzo. I0 and rank-into-rank axioms. , 2017. arχiv bibtex
- Dimopoulos, Stamatis. Woodin for strong compactness cardinals. The Journal of Symbolic Logic 84(1):301–319, 2019. arχiv DOI bibtex
- Dodd, Anthony and Jensen, Ronald. The core model. Ann Math Logic 20(1):43--75, 1981. www DOI MR bibtex
- Donder, Hans-Dieter and Koepke, Peter. On the Consistency Strength of 'Accessible' Jónsson Cardinals and of the Weak Chang Conjecture. Annals of Pure and Applied Logic , 1998. www DOI bibtex
- Donder, Hans-Dieter and Levinski, Jean-Pierre. Some principles related to Chang's conjecture. Annals of Pure and Applied Logic 45:39-101, 1989. www DOI bibtex
- Drake, Frank. Set Theory: An Introduction to Large Cardinals. North-Holland Pub. Co., 1974. bibtex
- Enayat, Ali. Models of set theory with definable ordinals. Archive for Mathematical Logic 44:363–385, April, 2005. www DOI bibtex
- Erdős, Paul and Hajnal, Andras. Some remarks concerning our paper ``On the structure of set-mappings''. Non-existence of a two-valued $\sigma $-measure for the first uncountable inaccessible cardinal. Acta Math Acad Sci Hungar 13:223--226, 1962. MR bibtex
- Erdős, Paul and Hajnal, Andras. On the structure of set-mappings. Acta Math Acad Sci Hungar 9:111--131, 1958. MR bibtex
- Eskrew, Monroe and Hayut, Yair. On the consistency of local and global versions of Chang's Conjecture. , 2016. arχiv bibtex
- Esser, Olivier. Inconsistency of GPK+AFA. Mathematical Logic Quarterly 42:104--108, 1996. www DOI bibtex
- Esser, Olivier. An Interpretation of the Zermelo-Fraenkel Set Theory and the Kelley-Morse Set Theory in a Positive Theory. Mathematical Logic Quarterly 43:369--377, 1997. www DOI bibtex
- Esser, Olivier. On the Consistency of a Positive Theory. Mathematical Logic Quarterly 45:105--116, 1999. www DOI bibtex
- Esser, Olivier. Inconsistency of the Axiom of Choice with the Positive Theory $GPK^+_\infty$. Journal of Symbolic Logic 65(4):1911--1916, Dec., 2000. www DOI bibtex
- Esser, Olivier. On the axiom of extensionality in the positive set theory. Mathematical Logic Quarterly 19:97--100, 2003. www DOI bibtex
- Evans, C D A and Hamkins, Joel David. Transfinite game values in infinite chess. (under review) www arχiv bibtex
- Feng, Qi. A hierarchy of Ramsey cardinals. Annals of Pure and Applied Logic 49(3):257 - 277, 1990. DOI bibtex
- Foreman, Matthew and Kanamori, Akihiro. Handbook of Set Theory. First, Springer, 2010. (This book is actually a compendium of articles from multiple authors) www bibtex
- Forti, M and Hinnion, R. The Consistency Problem for Positive Comprehension Principles. J Symbolic Logic 54(4):1401--1418, 1989. bibtex
- Friedman, Harvey M. Subtle cardinals and linear orderings. , 1998. www bibtex
- Fuchs, Gunter and Hamkins, Joel David and Reitz, Jonas. Set-theoretic geology. Annals of Pure and Applied Logic 166(4):464 - 501, 2015. www arχiv DOI bibtex
- Gaifman, Haim. Elementary embeddings of models of set-theory and certain subtheories. Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967), pp. 33--101, Providence R.I., 1974. MR bibtex
- Gitman, Victoria. Ramsey-like cardinals. The Journal of Symbolic Logic 76(2):519-540, 2011. www arχiv MR bibtex
- Gitman, Victoria and Welch, Philip. Ramsey-like cardinals II. J Symbolic Logic 76(2):541--560, 2011. www arχiv MR bibtex
- Gitman, Victoria and Hamkins, Joel David. A model of the generic Vopěnka principle in which the ordinals are not Mahlo. , 2018. arχiv bibtex
- Gitman, Victoria and Johnstone, Thomas A. Indestructibility for Ramsey and Ramsey-like cardinals. (In preparation) www bibtex
- Gitman, Victoria and Shindler, Ralf. Virtual large cardinals. www bibtex
- Goldblatt, Robert. Lectures on the Hyperreals. Springer, 1998. bibtex
- Goldstern, Martin and Shelah, Saharon. The Bounded Proper Forcing Axiom. J Symbolic Logic 60(1):58--73, 1995. www bibtex
- Golshani, Mohammad. An Easton like theorem in the presence of Shelah cardinals. M Arch Math Logic 56(3-4):273-287, May, 2017. www DOI bibtex
- Hamkins, Joel David and Lewis, Andy. Infinite time Turing machines. J Symbolic Logic 65(2):567--604, 2000. www arχiv DOI MR bibtex
- Hamkins, Joel David. The wholeness axioms and V=HOD. Arch Math Logic 40(1):1--8, 2001. www arχiv DOI MR bibtex
- Hamkins, Joel David. Infinite time Turing machines. Minds and Machines 12(4):521--539, 2002. (special issue devoted to hypercomputation) www arχiv bibtex
- Hamkins, Joel David. Supertask computation. Classical and new paradigms of computation and their complexity hierarchies23:141--158, Dordrecht, 2004. (Papers of the conference ``Foundations of the Formal Sciences III'' held in Vienna, September 21-24, 2001) www arχiv DOI MR bibtex
- Hamkins, Joel David. Unfoldable cardinals and the GCH. , 2008. arχiv bibtex
- Hamkins, Joel David. Tall cardinals. MLQ Math Log Q 55(1):68--86, 2009. www DOI MR bibtex
- Hamkins, Joel David and Johnstone, Thomas A. Indestructible strong un-foldability. Notre Dame J Form Log 51(3):291--321, 2010. bibtex
- Hamkins, Joel David; Linetsky, David; Reitz, Jonas. Pointwise Definable Models of Set Theory. , 2012. arχiv bibtex
- Hamkins, Joel David and Johnstone, Thomas A. Resurrection axioms and uplifting cardinals. , 2014. www arχiv bibtex
- Hamkins, Joel David and Johnstone, Thomas A. Strongly uplifting cardinals and the boldface resurrection axioms. , 2014. arχiv bibtex
- Hamkins, Joel David. The Vopěnka principle is inequivalent to but conservative over the Vopěnka scheme. , 2016. www arχiv bibtex
- Hauser, Kai. Indescribable Cardinals and Elementary Embeddings. 56(2):439 - 457, 1991. www DOI bibtex
- Holy, Peter and Schlicht, Philipp. A hierarchy of Ramsey-like cardinals. Fundamenta Mathematicae 242:49-74, 2018. www arχiv DOI bibtex
- Jackson, Steve; Ketchersid, Richard; Schlutzenberg, Farmer; Woodin, W Hugh. Determinacy and Jónsson cardinals in $L(\mathbb{R})$. , 2015. arχiv DOI bibtex
- Jech, Thomas J. Set Theory. Third, Springer-Verlag, Berlin, 2003. (The third millennium edition, revised and expanded) www bibtex
- Jensen, Ronald and Kunen, Kenneth. Some combinatorial properties of $L$ and $V$. Unpublished, 1969. www bibtex
- Kanamori, Akihiro and Magidor, Menachem. The evolution of large cardinal axioms in set theory. Higher set theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977)669:99--275, Berlin, 1978. www MR bibtex
- Kanamori, Akihiro and Reinhardt, William N and Solovay, Robert M. Strong axioms of infinity and elementary embeddings. , 1978. (In ''Annals of Mathematical Logic'', '''13'''(1978)) www bibtex
- Kanamori, Akihiro and Awerbuch-Friedlander, Tamara. The compleat 0†. Mathematical Logic Quarterly 36(2):133-141, 1990. DOI bibtex
- Kanamori, Akihiro. The higher infinite. Second, Springer-Verlag, Berlin, 2009. (Large cardinals in set theory from their beginnings, Paperback reprint of the 2003 edition) www bibtex
- Kentaro, Sato. Double helix in large large cardinals and iteration of elementary embeddings. Annals of Pure and Applied Logic 146(2-3):199-236, May, 2007. www DOI bibtex
- Ketonen, Jussi. Some combinatorial principles. Trans Amer Math Soc 188:387-394, 1974. DOI bibtex
- Koellner, Peter and Woodin, W Hugh. Chapter 23: Large cardinals from Determinacy. Handbook of Set Theory , 2010. www bibtex
- Kunen, Kenneth. Saturated Ideals. J Symbolic Logic 43(1):65--76, 1978. www bibtex
- Larson, Paul B. A brief history of determinacy. , 2013. www bibtex
- Laver, Richard. Implications between strong large cardinal axioms. Ann Math Logic 90(1--3):79--90, 1997. MR bibtex
- Leshem, Amir. On the consistency of the definable tree property on $\aleph_1$. J Symbolic Logic 65(3):1204-1214, 2000. arχiv DOI bibtex
- Maddy, Penelope. Believing the axioms. I. J Symbolic Logic 53(2):181--511, 1988. www DOI bibtex
- Maddy, Penelope. Believing the axioms. II. J Symbolic Logic 53(3):736--764, 1988. www DOI bibtex
- Madore, David. A zoo of ordinals. , 2017. www bibtex
- Makowsky, Johann. Vopěnka's Principle and Compact Logics. J Symbol Logic , 1985. www bibtex
- Marek, W. Stable sets, a characterization of $\beta_2$-models of full second order arithmetic and some related facts. Fundamenta Mathematicae 82(2):175-189, 1974. www bibtex
- Martin, D. Characterizations of $0^\sharp$. , 2001. www bibtex
- Mitchell, William J. Jónsson Cardinals, Erdős Cardinals, and the Core Model. J Symbol Logic , 1997. arχiv bibtex
- Mitchell, William J. The Covering Lemma. Handbook of Set Theory , 2001. www bibtex
- Miyamoto, Tadatoshi. A note on weak segments of PFA. Proceedings of the sixth Asian logic conference pp. 175--197, 1998. bibtex
- Nielsen, Dan Saattrup and Welch, Philip. Games and Ramsey-like cardinals. , 2018. arχiv bibtex
- Perlmutter, Norman. The large cardinals between supercompact and almost-huge. , 2010. www arχiv bibtex
- Rathjen, Michael. The art of ordinal analysis. , 2006. www bibtex
- Richter, Wayne and Aczel, Peter. Inductive Definitions and Reflecting Properties of Admissible Ordinals. Generalized recursion theory : proceedings of the 1972 Oslo symposium, pp. 301-381, 1974. www bibtex
- Schanker, Jason A. Partial near supercompactness. Ann Pure Appl Logic , 2012. (In Press.) www DOI bibtex
- Schanker, Jason A. Weakly measurable cardinals. MLQ Math Log Q 57(3):266--280, 2011. www DOI bibtex
- Schanker, Jason A. Weakly measurable cardinals and partial near supercompactness. Ph.D. Thesis, CUNY Graduate Center, 2011. bibtex
- Schimmerling, Ernest. Woodin cardinals, Shelah cardinals, and the Mitchell-Steel core model. Proc Amer Math Soc 130(11):3385-3391, 2002. DOI bibtex
- Schindler, Ralf-Dieter. Proper forcing and remarkable cardinals. Bull Symbolic Logic 6(2):176--184, 2000. www DOI MR bibtex
- Sharpe, Ian and Welch, Philip. Greatly Erdős cardinals with some generalizations to the Chang and Ramsey properties. Ann Pure Appl Logic 162(11):863--902, 2011. www DOI MR bibtex
- Shelah, Saharon. Cardinal Arithmetic. Oxford Logic Guides 29, 1994. bibtex
- Silver, Jack. A large cardinal in the constructible universe. Fund Math 69:93--100, 1970. MR bibtex
- Silver, Jack. Some applications of model theory in set theory. Ann Math Logic 3(1):45--110, 1971. MR bibtex
- Suzuki, Akira. Non-existence of generic elementary embeddings into the ground model. Tsukuba J Math 22(2):343--347, 1998. MR bibtex | Abstract
- Suzuki, Akira. No elementary embedding from $V$ into $V$ is definable from parameters. J Symbolic Logic 64(4):1591--1594, 1999. www DOI MR bibtex
- Trang, Nam and Wilson, Trevor. Determinacy from Strong Compactness of $\omega_1$. , 2016. arχiv bibtex
- Tryba, Jan. On Jónsson cardinals with uncountable cofinality. Israel Journal of Mathematics 49(4), 1983. bibtex
- Usuba, Toshimichi. The downward directed grounds hypothesis and very large cardinals. Journal of Mathematical Logic 17(02):1750009, 2017. arχiv DOI bibtex
- Usuba, Toshimichi. Extendible cardinals and the mantle. Archive for Mathematical Logic 58(1-2):71-75, 2019. arχiv DOI bibtex
- Viale, Matteo and Weiß, Christoph. On the consistency strength of the proper forcing axiom. Advances in Mathematics 228(5):2672--2687, 2011. arχiv MR bibtex
- Villaveces, Andrés. Chains of End Elementary Extensions of Models of Set Theory. JSTOR , 1996. arχiv bibtex
- Welch, Philip. Some remarks on the maximality of Inner Models. Logic Colloquium , 1998. www bibtex
- Welch, Philip. The Lengths of Infinite Time Turing Machine Computations. Bulletin of the London Mathematical Society 32(2):129--136, 2000. bibtex
- Wilson, Trevor M. Weakly remarkable cardinals, Erdős cardinals, and the generic Vopěnka principle. , 2018. arχiv bibtex
- Woodin, W Hugh. Suitable extender models I. Journal of Mathematical Logic 10(01n02):101-339, 2010. www DOI bibtex
- Woodin, W Hugh. Suitable extender models II: beyond $\omega$-huge. Journal of Mathematical Logic 11(02):115-436, 2011. www DOI bibtex
- Zapletal, Jindrich. A new proof of Kunen's inconsistency. Proc Amer Math Soc 124(7):2203--2204, 1996. www DOI MR bibtex
User instructions
Cantor's attic users may make contributions to the library, in bibtex format, and then cite those references in other articles. Edit this page to make your contribution.