Difference between revisions of "Library"

From Cantor's Attic
Jump to: navigation, search
Line 25: Line 25:
 
     pages={157--260},
 
     pages={157--260},
 
}
 
}
 +
 +
#Blass2010:CardinalCharacteristicsHandbook bibtext=@article{Blass2010:CardinalCharacteristicsHandbook,
 +
  author = {Blass, Andreas},
 +
    title = {Chapter 6, Cardinal characteristics of the continuum},
 +
  journal = {Handbook of Set Theory},
 +
  editor = {Foreman, Mathew; Kanamori, Akihiro},
 +
    year = {2010},
 +
    isbn = {1402048432},
 +
publisher = {Springer},
 +
      url = {http://www.math.lsa.umich.edu/~ablass/hbk.pdf},
 +
}
 +
   
  
 
#Corazza2003:GapBetweenI3andWA bibtex=@ARTICLE{Corazza2003:WholenessAxiom,
 
#Corazza2003:GapBetweenI3andWA bibtex=@ARTICLE{Corazza2003:WholenessAxiom,

Revision as of 07:40, 9 January 2012


Step up the ladder towards wisdom, photo by Sigfrid Lundberg

Welcome to the library, our central repository for references cited here on Cantor's attic.

Library holdings

  1. Corazza, Paul. The Wholeness Axiom and Laver sequences. Annals of Pure and Applied Logic pp. 157--260, October, 2000. bibtex
  2. bibtext=@article{Blass2010:CardinalCharacteristicsHandbook, author = {Blass, Andreas}, title = {Chapter 6, Cardinal characteristics of the continuum}, journal = {Handbook of Set Theory}, editor = {Foreman, Mathew; Kanamori, Akihiro}, year = {2010}, isbn = {1402048432},publisher = {Springer}, url = {http://www.math.lsa.umich.edu/~ablass/hbk.pdf},}
  3. Corazza, Paul. The gap between ${\rm I}_3$ and the wholeness axiom. Fund Math 179(1):43--60, 2003. www   DOI   MR   bibtex
  4. Hamkins, Joel David and Lewis, Andy. Infinite time Turing machines. J Symbolic Logic 65(2):567--604, 2000. www   arχiv   DOI   MR   bibtex
  5. Hamkins, Joel David. Infinite time Turing machines. Minds and Machines 12(4):521--539, 2002. (special issue devoted to hypercomputation) www   arχiv   bibtex
  6. Hamkins, Joel David. Supertask computation. Classical and new paradigms of computation and their complexity hierarchies23:141--158, Dordrecht, 2004. (Papers of the conference ``Foundations of the Formal Sciences III'' held in Vienna, September 21-24, 2001) www   arχiv   DOI   MR   bibtex
  7. Hamkins, Joel David. The wholeness axioms and V=HOD. Arch Math Logic 40(1):1--8, 2001. www   arχiv   DOI   MR   bibtex
  8. Hamkins, Joel David. Tall cardinals. MLQ Math Log Q 55(1):68--86, 2009. www   DOI   MR   bibtex
  9. Jech, Thomas J. Set Theory. Third, Springer, Berlin, 2003. bibtex
  10. Kanamori, Akihiro. The higher infinite. Second, Springer-Verlag, Berlin, 2009. (Large cardinals in set theory from their beginnings, Paperback reprint of the 2003 edition) bibtex
  11. Kunen, Kenneth. Saturated Ideals. J Symbolic Logic 43(1):65--76, 1978. www   bibtex
  12. Schanker, Jason A. Weakly measurable cardinals. MLQ Math Log Q 57(3):266--280, 2011. www   DOI   bibtex
  13. Apter, Arthur and Gitman, Victoria and Hamkins, Joel David. Inner models with large cardinal features usually obtained by forcing. Archive for Mathematical Logic (To appear) bibtex
  14. Welch, Philip. The Lengths of Infinite Time Turing Machine Computations. Bulletin of the London Mathematical Society 32(2):129--136, 2000. bibtex
  15. Welch, Philip. Eventually Infinite Time Turing Machine Degrees: Infinite Time Decidable reals. Journal of Symbolic Logic 65(3):1193--1203, 2000. bibtex

User instructions

Cantor's attic users may make contributions to the library, in bibtex format, and then cite those references in other articles. Edit this page to make your contribution.