Difference between revisions of "Lower attic"
From Cantor's Attic
Line 2: | Line 2: | ||
* Up to [[The middle attic]] | * Up to [[The middle attic]] | ||
− | * | + | * $\Gamma$ |
− | * | + | * $\omega_1^{ck}$ |
− | * | + | * The $\epsilon_\alpha$ hierarchy |
− | * | + | * $\epsilon_1$ |
− | * | + | * $\epsilon_0$ |
− | * Ordinals below | + | * Ordinals below $\omega^\omega$ |
− | * | + | * $\omega^3$ |
− | * | + | * $\omega^2$ |
− | * | + | * $\omega\cdot n+k$ |
− | * | + | * $\omega\cdot2+1$ |
− | * | + | * $\omega\cdot2$ |
− | * | + | * $\omega+n$ |
− | * | + | * $\omega+2$ |
− | * [[ | + | * [[$\omega+1$]] |
+ | * [[Hilbert' hotel]] | ||
* [[<math>\omega</math>]] | * [[<math>\omega</math>]] |
Revision as of 16:30, 25 December 2011
Welcome to the lower attic, where we store the comparatively smaller notions of infinity. Roughly speaking, this is the realm of all brands of countable ordinals and their friends.
- Up to The middle attic
- $\Gamma$
- $\omega_1^{ck}$
- The $\epsilon_\alpha$ hierarchy
- $\epsilon_1$
- $\epsilon_0$
- Ordinals below $\omega^\omega$
- $\omega^3$
- $\omega^2$
- $\omega\cdot n+k$
- $\omega\cdot2+1$
- $\omega\cdot2$
- $\omega+n$
- $\omega+2$
- [[$\omega+1$]]
- Hilbert' hotel
- [[\(\omega\)]]