Difference between revisions of "Lower attic"
From Cantor's Attic
Zetapology (Talk | contribs) m (Added category) |
|||
Line 1: | Line 1: | ||
{{DISPLAYTITLE: The lower attic}} | {{DISPLAYTITLE: The lower attic}} | ||
[[File:SagradaSpiralByDavidNikonvscanon.jpg | thumb | Sagrada Spiral photo by David Nikonvscanon]] | [[File:SagradaSpiralByDavidNikonvscanon.jpg | thumb | Sagrada Spiral photo by David Nikonvscanon]] | ||
+ | [[Category:Lower attic]] | ||
Welcome to the lower attic, where the countably infinite ordinals climb ever higher, one upon another, in an eternal self-similar reflecting ascent. | Welcome to the lower attic, where the countably infinite ordinals climb ever higher, one upon another, in an eternal self-similar reflecting ascent. |
Revision as of 10:28, 3 November 2017
Welcome to the lower attic, where the countably infinite ordinals climb ever higher, one upon another, in an eternal self-similar reflecting ascent.
- $\omega_1$, the first uncountable ordinal, and the other uncountable cardinals of the middle attic
- stable ordinals
- The ordinals of infinite time Turing machines, including
- admissible ordinals and relativized Church-Kleene $\omega_1^x$
- Church-Kleene $\omega_1^{ck}$, the supremum of the computable ordinals
- the omega one of chess
- $\omega_1^{\mathfrak{Ch}_{\!\!\!\!\sim}}$ = the supremum of the game values for white of all positions in infinite chess
- $\omega_1^{\mathfrak{Ch},c}$ = the supremum of the game values for white of the computable positions in infinite chess
- $\omega_1^{\mathfrak{Ch}}$ = the supremum of the game values for white of the finite positions in infinite chess
- the Bachmann-Howard ordinal
- the large Veblen ordinal
- the small Veblen ordinal
- the Extended Veblen function
- the Feferman-Schütte ordinal $\Gamma_0$
- $\epsilon_0$ and the hierarchy of $\epsilon_\alpha$ numbers
- indecomposable ordinal
- the small countable ordinals, such as $\omega,\omega+1,\ldots,\omega\cdot 2,\ldots,\omega^2,\ldots,\omega^\omega,\ldots,\omega^{\omega^\omega},\ldots$ up to $\epsilon_0$
- Hilbert's hotel and other toys in the playroom
- $\omega$, the smallest infinity
- down to the parlour, where large finite numbers dream