Reflecting ordinal
From Cantor's Attic
- Not to be confused with reflecting cardinals.
Reflecting ordinals are large countable ordinals that show up in topics related to admissibility and reflection principles.
Definition
Let $\Pi$ denote its part of the Levy hierarchy. An ordinal $\alpha$ is $\Pi_n$-reflecting if for any formula φ(a) (in a language such as "$\mathcal L_\in$ with parameters") that is $\Pi_n$, for all $a\in L_\alpha$, $L_\alpha\vDash\phi(a)\rightarrow\exists(\beta\in\alpha)(L_\beta\vDash\phi(a))$. (Note that by a formula such as $``\phi(a)"=\ulcorner a=a\urcorner$, the condition $a\in L_\beta$ becomes superfluous). [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
References
Main library