Difference between revisions of "Strong"
Zetapology (Talk | contribs) (→Elementary Embedding Characterization) |
(→Facts about Strongness and Hypermeasurability) |
||
Line 38: | Line 38: | ||
*A cardinal $\kappa$ is [[measurable]] if and only if it is $\kappa^+$-hypermeasurable, since $\mathcal{P}(\kappa)\subset M$ for any $j:V\to M$ with critical point $\kappa$. | *A cardinal $\kappa$ is [[measurable]] if and only if it is $\kappa^+$-hypermeasurable, since $\mathcal{P}(\kappa)\subset M$ for any $j:V\to M$ with critical point $\kappa$. | ||
*If there is an $x$-hypermeasurable cardinal, then $V\neq L[x]$. <cite>Jech2003:SetTheory</cite> | *If there is an $x$-hypermeasurable cardinal, then $V\neq L[x]$. <cite>Jech2003:SetTheory</cite> | ||
− | *Every [[ | + | *Every [[supercompact]] cardinal $\kappa$ is strong and has $\kappa$ strong cardinals below it, as well as being a stationary limit of $\{\lambda<\kappa:\lambda$ is strong$\}$ |
*The [[Mitchell rank]] of any strong cardinal $o(\kappa)=(2^\kappa)^+$. <cite>Jech2003:SetTheory</cite> | *The [[Mitchell rank]] of any strong cardinal $o(\kappa)=(2^\kappa)^+$. <cite>Jech2003:SetTheory</cite> | ||
*Any strong cardinal is [[reflecting|$\Sigma_2$-reflecting]]. <cite>Jech2003:SetTheory</cite> | *Any strong cardinal is [[reflecting|$\Sigma_2$-reflecting]]. <cite>Jech2003:SetTheory</cite> |
Revision as of 10:17, 14 October 2018
Strong cardinals were created as a weakening of supercompact cardinals introduced by Dodd and Jensen in 1982 [1]. They are defined as a strengthening of measurability, being that they are critical points of elementary embeddings $j:V\rightarrow M$ for some transitive inner model of ZFC $M$. Hypermeasurability is a weakening of strongness (the property of being a strong cardinal is often called strongness), although if $\lambda=\beth_\lambda$ then a cardinal is $\lambda$-strong iff it is $\lambda$-hypermeasurable.
Contents
Definitions of Strongness
There are multiple equivalent definitions of strongness, using elementary embeddings and extenders.
Elementary Embedding Characterization
A cardinal $\kappa$ is $\gamma$-strong iff it is the critical point of some elementary embedding $j:V\rightarrow M$ for some transitive class $M$ such that $V_\gamma\subset M$. A cardinal $\kappa$ is strong iff it is $\gamma$-strong for each $\gamma$, iff it is $\gamma$-strong for arbitrarily large $\gamma$, iff for each set $x$, $\kappa$ is the critical point of some elementary embedding $j:V\rightarrow M$ for some transitive class $M$ such that $x\in M$.
More intuitively, there are elementary embeddings from $V$ into transitive classes which have critical point $\kappa$ and (in total) contain any set one wishes.
Extender Characterization
A cardinal $\kappa$ is strong iff it is uncountable and for every set $X$ of rank $\lambda\geq\kappa$, there is a $(\kappa,\beth_\lambda^+)$-extender $E$ such that, letting the ultrapower of $V$ by $E$ be called $Ult_E$ and the canonical ultrapower embedding from $V$ to $Ult_E$ be called $j$, $X\in Ult_E$ and $\lambda<j(\kappa)$. [1]
Once again, a more intuitive way to think about strongness is that there are many $(\kappa,\lambda)$-extenders $E$.
Definitions of Hypermeasurability
The definitions of hypermeasurability are very similar to the definitions of strongness, mainly because hypermeasurability is a generalized version of strongness. The intuition behind each definition is also very similar to that of the matching definitions of strongness.
Elementary Embedding Characterization
A cardinal $\kappa$ is $x$-hypermeasurable for a set $x$ iff it is the critical point of some elementary embedding $j:V\rightarrow M$ for some transitive class $M$ such that $x\in M$. A cardinal $\kappa$ is $\lambda$-hypermeasurable iff it is $H_\lambda$-hypermeasurable (where $H_\lambda$ is the set of all sets of hereditary cardinality less than $\lambda$).
Note that a cardinal is $\gamma$-strong iff it is $x$-hypermeasurable for every $x\in V_\gamma$ (iff it is $V_\gamma$-hypermeasurable as well) and a cardinal is strong iff it is $x$-hypermeasurable for every $x$.
Facts about Strongness and Hypermeasurability
Here is a list of facts about these cardinals:
- A cardinal $\kappa$ is $\gamma$-strong if and only if $\kappa$ is $\beth_\gamma$-hypermeasurable, by definition.
- In particular, $\kappa$ is $\mathcal{P}^2(\kappa)$-hypermeasurable if and only if it is $\kappa+2$-strong. This hypothesis appears in many theorems.
- A cardinal $\kappa$ is measurable if and only if it is $\kappa^+$-hypermeasurable, since $\mathcal{P}(\kappa)\subset M$ for any $j:V\to M$ with critical point $\kappa$.
- If there is an $x$-hypermeasurable cardinal, then $V\neq L[x]$. [1]
- Every supercompact cardinal $\kappa$ is strong and has $\kappa$ strong cardinals below it, as well as being a stationary limit of $\{\lambda<\kappa:\lambda$ is strong$\}$
- The Mitchell rank of any strong cardinal $o(\kappa)=(2^\kappa)^+$. [1]
- Any strong cardinal is $\Sigma_2$-reflecting. [1]
- Every strong cardinal is strongly unfoldable and thus totally indescribable. [2] Therefore, each of the following is never strong:
- The least measurable cardinal.
- The least $\kappa$ which is $2^\kappa$-supercompact, the least $\kappa$ which is $2^{2^\kappa}$-supercompact, etc.
- For each $n$, the least $n$-huge index cardinal (that is, the least target of an embedding witnessing $n$-hugeness of some cardinal) and the least $n$-huge cardinal.
- For each $n<\omega$, The least $\kappa$ such that there is some embedding $j:V_{\lambda+n}\prec V_{\kappa+n}$ with critical point $\lambda$ for some $\lambda<\kappa$ (see $n$-extendible).
- The least $\kappa$ which is both $2^\kappa$-supercompact and Vopěnka, the least $\kappa$ which is both $2^{2^\kappa}$-supercompact and Vopěnka, etc., the least $\kappa$ which is both measurable and Vopěnka, for each $n$ the least Vopěnka $\kappa$ such that there is some embedding $j:V_{\lambda+n}\prec V_{\kappa+n}$ with critical point $\lambda$ for some $\lambda<\kappa$, and more.
- If there is a strong cardinal then $V\neq L[A]$ for every set $A$.
- Assuming both a strong cardinal and a superstrong cardinal exist, and the least strong cardinal $\kappa$ has a superstrong above it, then the least strong cardinal has $\kappa$ superstrong cardinals below it.
Core Model up to Strongness
Dodd and Jensen created a core model based on sequences of extenders of strong cardinals. They constructed a sequence of extenders $\mathcal{E}$ such that: [1]
- $L[\mathcal{E}]$ is an inner model of ZFC.
- $L[\mathcal{E}]$ satisfies GCH, the square principle, and the existence of a $\Sigma_3^1$ well-ordering of $\mathbb{R}$.
- $L[\mathcal{E}]$ satisfies that $\mathcal{E}$ witnesses the existence of a strong cardinal
- If there does not exist an inner model of the existence of a strong cardinal, then:
- There is no nontrivial elementary embedding $j:L[\mathcal{E}]\rightarrow L[\mathcal{E}]$
- If $\kappa$ is a singular strong limit cardinal then $(\kappa^+)^{L[\mathcal{E}]}=\kappa^+$
As one can see, $L[\mathcal{E}]$ is a core model up to strongness. Dodd and Jensen also constructed a "sharp" defined analogously to $0^{\#}$, but instead of using $L$ one uses $L[\mathcal{E}]$. They then showed that there is a nontrivial elementary embedding $j:L[\mathcal{E}]\rightarrow L[\mathcal{E}]$ iff such a real exists. [1] This real is commonly referred to as the sharp for a strong cardinal.
References
- Jech, Thomas J. Set Theory. Third, Springer-Verlag, Berlin, 2003. (The third millennium edition, revised and expanded) www bibtex
- Gitman, Victoria. Ramsey-like cardinals. The Journal of Symbolic Logic 76(2):519-540, 2011. www arχiv MR bibtex