Difference between revisions of "Vopenka"
Zetapology (Talk | contribs) m (Fixed spelling, added category) |
Zetapology (Talk | contribs) m (Added equivalent definitions) |
||
Line 14: | Line 14: | ||
==Formalizations== | ==Formalizations== | ||
− | As stated above and from the point of view of ZFC, this is actually an axiom schema, as we quantify over proper classes, which from a purely ZFC perspective means definable proper classes. A somewhat stronger alternative is to view Vopěnka's principle as an axiom in second-order set theory capable to dealing with proper classes, such as von Neumann-Gödel-Bernays set theory. This is a strictly stronger assertion.[http://mathoverflow.net/questions/45602/can-vopenkas-principle-be-violated-definably] | + | As stated above and from the point of view of ZFC, this is actually an axiom schema, as we quantify over proper classes, which from a purely ZFC perspective means definable proper classes. A somewhat stronger alternative is to view Vopěnka's principle as an axiom in second-order set theory capable to dealing with proper classes, such as von Neumann-Gödel-Bernays set theory. This is a strictly stronger assertion. [http://mathoverflow.net/questions/45602/can-vopenkas-principle-be-violated-definably] Finally, one may relativize the principle to a particular cardinal, leading to the concept of a Vopěnka cardinal. |
== Vopěnka cardinals == | == Vopěnka cardinals == | ||
Line 20: | Line 20: | ||
An inaccessible cardinal $\kappa$ is a ''Vopěnka cardinal'' if and only if $V_\kappa$ satisfies Vopěnka's principle, that is, where we interpret the proper classes of $V_\kappa$ as the subsets of $V_\kappa$ of cardinality $\kappa$. | An inaccessible cardinal $\kappa$ is a ''Vopěnka cardinal'' if and only if $V_\kappa$ satisfies Vopěnka's principle, that is, where we interpret the proper classes of $V_\kappa$ as the subsets of $V_\kappa$ of cardinality $\kappa$. | ||
− | Perlmutter <cite> | + | Perlmutter <cite>Perlmutter2010:TheLargeCardinalsBetweenSupercompactAlmostHuge</cite> proved that a cardinal is a Vopěnka cardinal if and only if it is a [[Woodin|Woodin for supercompactness]] cardinal. |
As we mentioned above, every almost huge cardinal is a Vopěnka cardinal. | As we mentioned above, every almost huge cardinal is a Vopěnka cardinal. | ||
Line 26: | Line 26: | ||
==Equivalent statements== | ==Equivalent statements== | ||
− | The schema form of Vopěnka's principle is equivalent to the existence of a proper class of $C^{(n)}$-[[extendible]] cardinals for every $n$; indeed there is a level-by-level stratification of | + | === $C^{(n)}$-extendible cardinals === |
− | Vopěnka's principle, with Vopěnka's principle for a $\Sigma_{n+2}$-definable class corresponds to the existence of a $C^{(n)}$-extendible cardinal greater than the ranks of the parameters. | + | |
+ | The schema form of Vopěnka's principle is equivalent to the existence of a proper class of $C^{(n)}$-[[extendible]] cardinals for every $n$; indeed there is a level-by-level stratification of Vopěnka's principle, with Vopěnka's principle for a $\Sigma_{n+2}$-definable class corresponds to the existence of a $C^{(n)}$-extendible cardinal greater than the ranks of the parameters. | ||
<CITE>BagariaCasacubertaMathiasRosicky2012:OrthogonalityClasses</CITE> | <CITE>BagariaCasacubertaMathiasRosicky2012:OrthogonalityClasses</CITE> | ||
+ | |||
+ | === Strong Compactness of Logics === | ||
+ | |||
+ | Vopěnka's principle is equivalent to the following statement about logics as well: | ||
+ | |||
+ | For every logic $\mathcal{L}$, there is a cardinal $\mu_{\mathcal{L}}$ such that for any language $\tau$ and any $\mathcal{L}(\tau)$-theory $T$, $T$ is satisfiable if and only if every $t\subseteq T$ such that $|t|<\mu_{\mathcal{L}}$ is satisfiable. | ||
+ | |||
+ | This $\mu_{\mathcal{L}}$ is called the strong compactness cardinal of $\mathcal{L}$. Vopěnka's principle therefore is equivalent to every logic having a strong compactness cardinal. This is very similar in definition to the Löwenheim–Skolem number of $\mathcal{L}$, although it is not guaranteed to exist. | ||
+ | |||
+ | Here are some examples of strong compactness cardinals of specific logics: | ||
+ | |||
+ | *If $\kappa\leq\lambda$ and $\lambda$ is [[strongly compact]] or $\aleph_0$, then the strong compactness cardinal of [[infinitary logic|$\mathcal{L}_{\kappa,\kappa}$]] is at most $\lambda$. | ||
+ | *Similarly, if $\kappa\leq\lambda$ and $\lambda$ is [[extendible]], then for any natural number $n$, the strong compactness cardinal of $\mathcal{L}^n_{\kappa,\kappa}$ ($\mathcal{L}_{\kappa,\kappa}$ with $n+1$-th order logic) is at most $\lambda$. Therefore for any natural number $n$, the strong compactness cardinal of $n+1$-th order finitary logic is at most the least extendible cardinal. | ||
+ | |||
+ | === Elementary Embeddings Between Ranks === | ||
+ | |||
+ | An equivalent statement to Vopěnka's principle is that for any proper class $C\subseteq ORD$, there are $\alpha\in C$, $\beta\in C$, and a nontrivial [[elementary embedding]] $j:\langle V_\alpha;\in,P\rangle\rightarrow\langle V_\beta;\in,P\rangle$. Vopěnka's principle quite obviously implies this. The reason the converse holds is because every elementary embedding can be "encoded" (in a sense) into one of these. For more information, see <cite>Kanamori2009:HigherInfinite</cite>. | ||
==Other points to note== | ==Other points to note== | ||
− | Whilst Vopěnka cardinals are very strong in terms of consistency strength, a Vopěnka cardinal need not even be [[weakly compact]]. Indeed, the definition of a Vopěnka cardinal is a $\Pi^1_1$ statement | + | Whilst Vopěnka cardinals are very strong in terms of consistency strength, a Vopěnka cardinal need not even be [[weakly compact]]. Indeed, the definition of a Vopěnka cardinal is a $\Pi^1_1$ statement over $V_\kappa$ (Vopěnka's principle itself is $\Pi^1_1$), and [[indescribable|$\Pi^1_1$-indescribability]] is one of the equivalent definitions of weak compactness. Thus, the least weakly compact Vopěnka cardinal must have (many) other Vopěnka cardinals less than it. |
− | over $V_\kappa$, and $\Pi^1_1$ indescribability is one of the equivalent definitions of weak compactness. | + | |
==External links== | ==External links== |
Revision as of 19:12, 10 November 2017
Vopěnka's principle is a large cardinal axiom at the upper end of the large cardinal hierarchy that is particularly notable for its applications to category theory. In a set theoretic setting, the most common definition is the following:
For any language $\mathcal{L}$ and any proper class $C$ of $\mathcal{L}$-structures, there are distinct structures $M, N\in C$ and an elementary embedding $j:M\to N$.
For example, taking $\mathcal{L}$ to be the language with one unary and one binary predicate, we can consider for any ordinal $\eta$ the class of structures $\langle V_{\alpha+\eta},\{\alpha\},\in\rangle$, and conclude from Vopěnka's principle that a cardinal that is at least $\eta$-extendible exists. In fact if Vopěnka's principle holds then there are a proper class of extendible cardinals; bounding the strength of the axiom from above, we have that if $\kappa$ is almost huge, or even almost-high-jump, then $V_\kappa$ satisfies Vopěnka's principle.
Contents
Formalizations
As stated above and from the point of view of ZFC, this is actually an axiom schema, as we quantify over proper classes, which from a purely ZFC perspective means definable proper classes. A somewhat stronger alternative is to view Vopěnka's principle as an axiom in second-order set theory capable to dealing with proper classes, such as von Neumann-Gödel-Bernays set theory. This is a strictly stronger assertion. [1] Finally, one may relativize the principle to a particular cardinal, leading to the concept of a Vopěnka cardinal.
Vopěnka cardinals
An inaccessible cardinal $\kappa$ is a Vopěnka cardinal if and only if $V_\kappa$ satisfies Vopěnka's principle, that is, where we interpret the proper classes of $V_\kappa$ as the subsets of $V_\kappa$ of cardinality $\kappa$.
Perlmutter [1] proved that a cardinal is a Vopěnka cardinal if and only if it is a Woodin for supercompactness cardinal.
As we mentioned above, every almost huge cardinal is a Vopěnka cardinal.
Equivalent statements
$C^{(n)}$-extendible cardinals
The schema form of Vopěnka's principle is equivalent to the existence of a proper class of $C^{(n)}$-extendible cardinals for every $n$; indeed there is a level-by-level stratification of Vopěnka's principle, with Vopěnka's principle for a $\Sigma_{n+2}$-definable class corresponds to the existence of a $C^{(n)}$-extendible cardinal greater than the ranks of the parameters. [2]
Strong Compactness of Logics
Vopěnka's principle is equivalent to the following statement about logics as well:
For every logic $\mathcal{L}$, there is a cardinal $\mu_{\mathcal{L}}$ such that for any language $\tau$ and any $\mathcal{L}(\tau)$-theory $T$, $T$ is satisfiable if and only if every $t\subseteq T$ such that $|t|<\mu_{\mathcal{L}}$ is satisfiable.
This $\mu_{\mathcal{L}}$ is called the strong compactness cardinal of $\mathcal{L}$. Vopěnka's principle therefore is equivalent to every logic having a strong compactness cardinal. This is very similar in definition to the Löwenheim–Skolem number of $\mathcal{L}$, although it is not guaranteed to exist.
Here are some examples of strong compactness cardinals of specific logics:
- If $\kappa\leq\lambda$ and $\lambda$ is strongly compact or $\aleph_0$, then the strong compactness cardinal of $\mathcal{L}_{\kappa,\kappa}$ is at most $\lambda$.
- Similarly, if $\kappa\leq\lambda$ and $\lambda$ is extendible, then for any natural number $n$, the strong compactness cardinal of $\mathcal{L}^n_{\kappa,\kappa}$ ($\mathcal{L}_{\kappa,\kappa}$ with $n+1$-th order logic) is at most $\lambda$. Therefore for any natural number $n$, the strong compactness cardinal of $n+1$-th order finitary logic is at most the least extendible cardinal.
Elementary Embeddings Between Ranks
An equivalent statement to Vopěnka's principle is that for any proper class $C\subseteq ORD$, there are $\alpha\in C$, $\beta\in C$, and a nontrivial elementary embedding $j:\langle V_\alpha;\in,P\rangle\rightarrow\langle V_\beta;\in,P\rangle$. Vopěnka's principle quite obviously implies this. The reason the converse holds is because every elementary embedding can be "encoded" (in a sense) into one of these. For more information, see [3].
Other points to note
Whilst Vopěnka cardinals are very strong in terms of consistency strength, a Vopěnka cardinal need not even be weakly compact. Indeed, the definition of a Vopěnka cardinal is a $\Pi^1_1$ statement over $V_\kappa$ (Vopěnka's principle itself is $\Pi^1_1$), and $\Pi^1_1$-indescribability is one of the equivalent definitions of weak compactness. Thus, the least weakly compact Vopěnka cardinal must have (many) other Vopěnka cardinals less than it.
External links
References
- Perlmutter, Norman. The large cardinals between supercompact and almost-huge. , 2010. www arχiv bibtex
- Bagaria, Joan and Casacuberta, Carles and Mathias, A R D and Rosický, Jiří. Definable orthogonality classes in accessible categories are small. Journal of the European Mathematical Society 17(3):549--589. arχiv bibtex
- Kanamori, Akihiro. The higher infinite. Second, Springer-Verlag, Berlin, 2009. (Large cardinals in set theory from their beginnings, Paperback reprint of the 2003 edition) www bibtex