# Vopěnka's principle

Vopěnka's principle is a large cardinal axiom at the upper end of the large cardinal hierarchy that is particularly notable for its applications to category theory.
In a set theoretic setting, the most common definition is the following:

For any language $\mathcal{L}$ and any proper class $C$ of $\mathcal{L}$-structures, there are distinct structures $M, N\in C$ and an elementary embedding $j:M\to N$.

For example, taking $\mathcal{L}$ to be the language with one unary and one binary predicate, we can consider for any ordinal $\eta$ the class of structures $\langle V_{\alpha+\eta},\{\alpha\},\in\rangle$, and conclude from Vopěnka's principle that a cardinal that is at least $\eta$-extendible exists. In fact if Vopěnka's principle holds then there are a proper class of extendible cardinals; bounding the strength of the axiom from above, we have that if $\kappa$ is almost huge, then $V_\kappa$ satisfies Vopěnka's principle.

This article is a stub. Please help us to improve Cantor's Attic by adding information.

## Vopěnka cardinal

This article is a stub. Please help us to improve Cantor's Attic by adding information.