Difference between revisions of "Weakly compact"
Zetapology (Talk | contribs) m |
Zetapology (Talk | contribs) m (fixed definition of Strong Skolem Property) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 14: | Line 14: | ||
:; Partition property : A cardinal $\kappa$ is weakly compact if and only if the [[partition property]] $\kappa\to(\kappa)^2_2$ holds. | :; Partition property : A cardinal $\kappa$ is weakly compact if and only if the [[partition property]] $\kappa\to(\kappa)^2_2$ holds. | ||
:; Indescribability property : A cardinal $\kappa$ is weakly compact if and only if it is $\Pi_1^1$-[[indescribable]]. | :; Indescribability property : A cardinal $\kappa$ is weakly compact if and only if it is $\Pi_1^1$-[[indescribable]]. | ||
+ | :; Strong Skolem Property : A cardinal $\kappa$ is weakly compact if and only if $\kappa$ is inaccessible and every $\kappa$-unboundedly satisfiable $\mathcal{L}_{\kappa,\kappa}$-theory $T$ of size at most $\kappa$ has a model of size at least $\kappa$. A theory $T$ is $\kappa$-unboundedly satisfiable if and only if for any $\lambda<\kappa$, there exists a model $\mathcal{M}\models T$ with $\lambda\leq|M|<\kappa$. For more info see [https://mathoverflow.net/questions/309896/a-weakening-of-cardinal-compactness-is-it-equivalent/309937#309937 here]. | ||
+ | :; Weak Skolem Property : A cardinal $\kappa$ is weakly compact if and only if $\kappa$ is inaccessible and every $\kappa$-unboundedly satisfiable $\mathcal{L}_{\kappa,\omega}$-theory $T$ with at most $\kappa$-many symbols has a model of size at least $\kappa$. | ||
Weakly compact cardinals first arose | Weakly compact cardinals first arose |
Revision as of 07:15, 6 September 2018
Weakly compact cardinals lie at the focal point of a number of diverse concepts in infinite combinatorics, admitting various characterizations in terms of these concepts. If $\kappa^{{<}\kappa} = \kappa$, then the following are equivalent:
- Weak compactness
- A cardinal $\kappa$ is weakly compact if and only if it is uncountable and every $\kappa$-satisfiable theory in an $\mathcal{L}_{\kappa,\kappa}$ language of size at most $\kappa$ is satisfiable.
- Extension property
- A cardinal $\kappa$ is weakly compact if and only if for every $A\subset V_\kappa$, there is a transitive structure $W$ properly extending $V_\kappa$ and $A^*\subset W$ such that $\langle V_\kappa,{\in},A\rangle\prec\langle W,{\in},A^*\rangle$.
- Tree property
- A cardinal $\kappa$ is weakly compact if and only if it is inaccessible and has the tree property.
- Filter property
- A cardinal $\kappa$ is weakly compact if and only if whenever $M$ is a set containing at most $\kappa$-many subsets of $\kappa$, then there is a $\kappa$-complete nonprincipal filter $F$ measuring every set in $M$.
- Weak embedding property
- A cardinal $\kappa$ is weakly compact if and only if for every $A\subset\kappa$ there is a transitive set $M$ of size $\kappa$ with $\kappa\in M$ and a transitive set $N$ with an embedding $j:M\to N$ with critical point $\kappa$.
- Embedding characterization
- A cardinal $\kappa$ is weakly compact if and only if for every transitive set $M$ of size $\kappa$ with $\kappa\in M$ there is a transitive set $N$ and an embedding $j:M\to N$ with critical point $\kappa$.
- Normal embedding characterization
- A cardinal $\kappa$ is weakly compact if and only if for every $\kappa$-model $M$ there is a $\kappa$-model $N$ and an embedding $j:M\to N$ with critical point $\kappa$, such that $N=\{\ j(f)(\kappa)\mid f\in M\ \}$.
- Hauser embedding characterization
- A cardinal $\kappa$ is weakly compact if and only if for every $\kappa$-model $M$ there is a $\kappa$-model $N$ and an embedding $j:M\to N$ with critical point $\kappa$ such that $j,M\in N$.
- Partition property
- A cardinal $\kappa$ is weakly compact if and only if the partition property $\kappa\to(\kappa)^2_2$ holds.
- Indescribability property
- A cardinal $\kappa$ is weakly compact if and only if it is $\Pi_1^1$-indescribable.
- Strong Skolem Property
- A cardinal $\kappa$ is weakly compact if and only if $\kappa$ is inaccessible and every $\kappa$-unboundedly satisfiable $\mathcal{L}_{\kappa,\kappa}$-theory $T$ of size at most $\kappa$ has a model of size at least $\kappa$. A theory $T$ is $\kappa$-unboundedly satisfiable if and only if for any $\lambda<\kappa$, there exists a model $\mathcal{M}\models T$ with $\lambda\leq|M|<\kappa$. For more info see here.
- Weak Skolem Property
- A cardinal $\kappa$ is weakly compact if and only if $\kappa$ is inaccessible and every $\kappa$-unboundedly satisfiable $\mathcal{L}_{\kappa,\omega}$-theory $T$ with at most $\kappa$-many symbols has a model of size at least $\kappa$.
Weakly compact cardinals first arose in connection with (and were named for) the question of whether certain infinitary logics satisfy the compactness theorem of first order logic. Specifically, in a language with a signature consisting, as in the first order context, of a set of constant, finitary function and relation symbols, we build up the language of $\mathcal{L}_{\kappa,\lambda}$ formulas by closing the collection of formulas under infinitary conjunctions $\wedge_{\alpha<\delta}\varphi_\alpha$ and disjunctions $\vee_{\alpha<\delta}\varphi_\alpha$ of any size $\delta<\kappa$, as well as infinitary quantification $\exists\vec x$ and $\forall\vec x$ over blocks of variables $\vec x=\langle x_\alpha\mid\alpha<\delta\rangle$ of size less than $\kappa$. A theory in such a language is satisfiable if it has a model under the natural semantics. A theory is $\theta$-satisfiable if every subtheory consisting of fewer than $\theta$ many sentences of it is satisfiable. First order logic is precisely $L_{\omega,\omega}$, and the classical Compactness theorem asserts that every $\omega$-satisfiable $\mathcal{L}_{\omega,\omega}$ theory is satisfiable. A uncountable cardinal $\kappa$ is strongly compact if every $\kappa$-satisfiable $\mathcal{L}_{\kappa,\kappa}$ theory is satisfiable. The cardinal $\kappa$ is weakly compact if every $\kappa$-satisfiable $\mathcal{L}_{\kappa,\kappa}$ theory, in a language having at most $\kappa$ many constant, function and relation symbols, is satisfiable.
Next, for any cardinal $\kappa$, a $\kappa$-tree is a tree of height $\kappa$, all of whose levels have size less than $\kappa$. More specifically, $T$ is a tree if $T$ is a partial order such that the predecessors of any node in $T$ are well ordered. The $\alpha^{\rm th}$ level of a tree $T$, denoted $T_\alpha$, consists of the nodes whose predecessors have order type exactly $\alpha$, and these nodes are also said to have height $\alpha$. The height of the tree $T$ is the first $\alpha$ for which $T$ has no nodes of height $\alpha$. A ""$\kappa$-branch"" through a tree $T$ is a maximal linearly ordered subset of $T$ of order type $\kappa$. Such a branch selects exactly one node from each level, in a linearly ordered manner. The set of $\kappa$-branches is denoted $[T]$. A $\kappa$-tree is an Aronszajn tree if it has no $\kappa$-branches. A cardinal $\kappa$ has the tree property if every $\kappa$-tree has a $\kappa$-branch.
A transitive set $M$ is a $\kappa$-model of set theory if $|M|=\kappa$, $M^{\lt\kappa}\subset M$ and $M$ satisfies ZFC$^-$, the theory ZFC without the power set axiom (and using collection and separation rather than merely replacement). For any infinite cardinal $\kappa$ we have that $H_{\kappa^+}$ models ZFC$^-$, and further, if $M\prec H_{\kappa^+}$ and $\kappa\subset M$, then $M$ is transitive. Thus, any $A\in H_{\kappa^+}$ can be placed into such an $M$. If $\kappa^{\lt\kappa}=\kappa$, one can use the downward Löwenheim-Skolem theorem to find such $M$ with $M^{\lt\kappa}\subset M$. So in this case there are abundant $\kappa$-models of set theory (and conversely, if there is a $\kappa$-model of set theory, then $2^{\lt\kappa}=\kappa$).
The partition property $\kappa\to(\lambda)^n_\gamma$ asserts that for every function $F:[\kappa]^n\to\gamma$ there is $H\subset\kappa$ with $|H|=\lambda$ such that $F\upharpoonright[H]^n$ is constant. If one thinks of $F$ as coloring the $n$-tuples, the partition property asserts the existence of a monochromatic set $H$, since all tuples from $H$ get the same color. The partition property $\kappa\to(\kappa)^2_2$ asserts that every partition of $[\kappa]^2$ into two sets admits a set $H\subset\kappa$ of size $\kappa$ such that $[H]^2$ lies on one side of the partition. When defining $F:[\kappa]^n\to\gamma$, we define $F(\alpha_1,\ldots,\alpha_n)$ only when $\alpha_1<\cdots<\alpha_n$.
Contents
Weakly compact cardinals and the constructible universe
Every weakly compact cardinal is weakly compact in $L$. [1]
Nevertheless, the weak compactness property is not generally downward absolute between transitive models of set theory.
Weakly compact cardinals and forcing
- Weakly compact cardinals are invariant under small forcing. [1]
- Weakly compact cardinals are preserved by the canonical forcing of the GCH, by fast function forcing and many other forcing notions [ citation needed ].
- If $\kappa$ is weakly compact, there is a forcing extension in which $\kappa$ remains weakly compact and $2^\kappa\gt\kappa$ [ citation needed ].
- If the existence of weakly compact cardinals is consistent with ZFC, then there is a model of ZFC in which $\kappa$ is not weakly compact, but becomes weakly compact in a forcing extension [2].
Indestructibility of a weakly compact cardinal
To expand using [2]
Relations with other large cardinals
- Every weakly compact cardinal is inaccessible, Mahlo, hyper-Mahlo, hyper-hyper-Mahlo and more.
- Measurable cardinals, Ramsey cardinals, and totally indescribable cardinals are all weakly compact and a stationary limit of weakly compact cardinals.
- Assuming the consistency of a strongly unfoldable cardinal with ZFC, it is also consistent for the least weakly compact cardinal to be the least unfoldable cardinal. [3]
- If GCH holds, then the least weakly compact cardinal is not weakly measurable. However, if there is a measurable cardinal, then it is consistent for the least weakly compact cardinal to be weakly measurable. [3]
- If it is consistent for there to be a nearly supercompact, then it is consistent for the least weakly compact cardinal to be nearly supercompact. [3]
References
- Jech, Thomas J. Set Theory. Third, Springer-Verlag, Berlin, 2003. (The third millennium edition, revised and expanded) www bibtex
- Kunen, Kenneth. Saturated Ideals. J Symbolic Logic 43(1):65--76, 1978. www bibtex
- Cody, Brent, Gitik, Moti, Hamkins, Joel David, and Schanker, Jason. The Least Weakly Compact Cardinal Can Be Unfoldable, Weakly Measurable and Nearly θ-Supercompact. , 2013. www bibtex